Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (4) : 999-1011    https://doi.org/10.1007/s11464-018-0708-x
RESEARCH ARTICLE
Realization of Poisson enveloping algebra
Can ZHU(), Yaxiu WANG
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(179 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For a Poisson algebra, the category of Poisson modules is equivalent to the module category of its Poisson enveloping algebra, where the Poisson enveloping algebra is an associative one. In this article, for a Poisson structure on a polynomial algebra S, we first construct a Poisson algebra R, then prove that the Poisson enveloping algebra of S is isomorphic to the specialization of the quantized universal enveloping algebra of R, and therefore, is a deformation quantization of R.

Keywords Poisson enveloping algebra      quantized universal enveloping algebra      deformation quantization     
Corresponding Author(s): Can ZHU   
Issue Date: 14 August 2018
 Cite this article:   
Can ZHU,Yaxiu WANG. Realization of Poisson enveloping algebra[J]. Front. Math. China, 2018, 13(4): 999-1011.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0708-x
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I4/999
1 Brown K A, Gordon I. Poisson orders, symplectic reflection algebras and representation theory. J Reine Angew Math, 2003, 559: 193–216
https://doi.org/10.1515/crll.2003.048
2 Calaque D, Felder G, Rossi C. Deformation quantization with generators and relations. J Algebra, 2011, 337: 1–12
https://doi.org/10.1016/j.jalgebra.2011.03.037
3 Dolgushev V A. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228
https://doi.org/10.1007/s00029-008-0062-z
4 Huebschmann J. Poisson cohomology and quantization. J Reine Angew Math, 1990, 408: 57–113
5 Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216
https://doi.org/10.1023/B:MATH.0000027508.00421.bf
6 Lü J, Wang X, Zhuang G. Universal enveloping algebras of Poisson Hopf algebras. J Algebra, 2015, 426: 92–136
https://doi.org/10.1016/j.jalgebra.2014.12.010
7 Lü J, Wang X, Zhuang G. Universal enveloping algebras of Poisson Ore extensions. Proc Amer Math Soc, 2015, 143: 4633–4645
https://doi.org/10.1090/S0002-9939-2015-12631-7
8 Lü J, Wang X, Zhuang G. DG Poisson algebra and its universal enveloping algebra. Sci China Math, 2016, 59: 849–860
https://doi.org/10.1007/s11425-016-5127-4
9 Lü J, Wang X, Zhuang G. Homological unimodularity and Calabi-Yau condition for Poisson algebras. Lett Math Phys, 2017, 107: 1715–1740
https://doi.org/10.1007/s11005-017-0967-6
10 Oh S Q. Poisson enveloping algebras. Comm Algebra, 1999, 27: 2181–2186
https://doi.org/10.1080/00927879908826556
11 Oh S Q, Park C G, Shin Y Y. A Poincaré-Birkhoff-Witt theorem for Poisson enveloping algebras. Comm Algebra, 2002, 30: 4867–4887
https://doi.org/10.1081/AGB-120014673
12 Penkava M, Vanhaecke P. Deformation quantization of polynomial Poisson algebras. J Algebra, 2000, 227: 365–393
https://doi.org/10.1006/jabr.1999.8239
13 Rinehart G. Differential forms on general commutative algebras. Trans Amer Math Soc, 1963, 108: 195–222
https://doi.org/10.1090/S0002-9947-1963-0154906-3
14 Shoikhet B. Kontsevich formality and PBW algebras. arXiv: 0708.1634
15 Shoikhet B. The PBW property for associative algebras as an integrability conditions. Math Res Lett, 2014, 21: 1407–1434
https://doi.org/10.4310/MRL.2014.v21.n6.a11
16 Towers M. Poisson and Hochschild cohomology and the semiclassical limit. J Noncommut Geom, 2015, 9: 665–696
https://doi.org/10.4171/JNCG/204
17 Umirbaev U. Universal enveloping algebras and universal derivations of Poisson algebras. J Algebra, 2012, 354: 77–94
https://doi.org/10.1016/j.jalgebra.2012.01.003
18 Vancliff M. Primitive and Poisson spectra of twists of polynomial rings. Algebr Represent Theory, 1999, 3: 269–285
https://doi.org/10.1023/A:1009914728281
19 Weinstein A. The local structure of Poisson manifolds. J Differential Geom, 1982, 18: 523–557
https://doi.org/10.4310/jdg/1214437787
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed