Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (6) : 1355-1368    https://doi.org/10.1007/s11464-018-0732-x
RESEARCH ARTICLE
Exponential sums involving automorphic forms for GL(3) over arithmetic progressions
Xiaoguang HE()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(322 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let f be a Hecke-Maass cusp form for SL(3; ) with Fourier coefficients Af(m; n); and let ϕ (x) be a C -function supported on [1; 2] with derivatives bounded by ϕ (j)(x)j 1. We prove an asymptotic formula for the nonlinear exponential sum Σnlmod q Af(m,n )φ(n/X)e(3 (kn))1/3/q, where e(z)=e2πiz and k +.

Keywords Automorphic forms for GL(3)      exponential sum, arithmetic progression     
Corresponding Author(s): Xiaoguang HE   
Issue Date: 02 January 2019
 Cite this article:   
Xiaoguang HE. Exponential sums involving automorphic forms for GL(3) over arithmetic progressions[J]. Front. Math. China, 2018, 13(6): 1355-1368.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0732-x
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I6/1355
1 DGoldfeld. Automorphic forms and L-functions for the group GL(n;ℝ): Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006
2 DGoldfeld, X QLi. Voronoi formulas on GL(n): Int Math Res Not IMRN, 2006, Art ID: 86295 (25pp)
3 DGoldfeld, X QLi. The Voronoi formula for GL(n;ℝ): Int Math Res Not IMRN, 2008, (9): rnm144 (39pp)
4 HIwaniec, W ZLuo, PSarnak. Low lying zeros of families of L-functions. Inst Hautes Études Sci Publ Math, 2000, 91: 55–131
5 JKaczorowski, A Perelli. On the structure of the Selberg class VI: non-linear twists. Acta Arith, 2005, 116: 315–341
6 HKim. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2: J Amer Math Soc, 2003, 16: 139–183
7 X QLi. The central value of the Rankin-Selberg L-functions. Geom Funct Anal, 2009, 18(5): 1660–1695
8 S DMiller, W.SchmidAutomorphic distributions, L-functions, and Voronoi summation for GL(3): Ann of Math (2), 2006, 164(2): 423–488
9 X MRen, Y BYe. Resonance between automorphic forms and exponential functions. Sci China Math, 2010, 53: 2463–2472
10 X MRen, Y B.YeAsymptotic Voronoi's summation formulas and their duality for SL3( ℤ): In: Kanemitsu S, Li H-Z, Liu J-Y, eds. Number Theory: Arithmetic in Shangri-La. Proceedings of the 6th China-Japan Seminar. Series on Number Theory and Its Applications, Vol 8. Singapore: World Scientific, 2013, 213–236
11 X MRen, Y B.YeResonance of automorphic forms for GL(3): Trans Amer Math Soc, 2015, 367(3): 2137–2157
12 P.SarnakNotes on the generalized Ramanujan conjectures. In: Arthur J, Ellwood D, Kottwitz R, eds. Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math Proc, Vol 4. Providence: Amer Math Soc, 2005, 659–685
13 Q FSun, Y YWu. Exponential sums involving Maass forms. Front Math China, 2014, 9(6): 1349–1366
14 X FYan. On some exponential sums involving Maass forms over arithmetic progressions. J Number Theory, 2016, 160: 44–59
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed