|
|
|
New characterizations of Musielak–Orlicz–Sobolev spaces via sharp ball averaging functions |
Sibei YANG1, Dachun YANG2( ), Wen YUAN2 |
1. School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China 2. Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract We establish a new characterization of the Musielak–Orlicz–Sobolev space on ; which includes the classical Orlicz–Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, in terms of sharp ball averaging functions. Even in a special case, namely, the variable exponent Sobolev space, the obtained result in this article improves the corresponding result obtained by P. Hästö and A. M. Ribeiro [Commun. Contemp. Math., 2017, 19: 1650022] via weakening the assumption into , which was conjectured to be true by Hästö and Ribeiro in the aforementioned same article.
|
| Keywords
Musielak–Orlicz–Sobolev space
Orlicz–Sobolev space
variable exponent Sobolev space
sharp ball averaging function
|
|
Corresponding Author(s):
Dachun YANG
|
|
Issue Date: 22 March 2019
|
|
| 1 |
EAcerbi, GMingione. Regularity results for a class of functionals with non-standard growth. Arch Ration Mech Anal, 2001, 156: 121–140
https://doi.org/10.1007/s002050100117
|
| 2 |
EAcerbi, GMingione. Gradient estimates for the p(x)-Laplacean system. J Reine Angew Math, 2005, 584: 117–148
https://doi.org/10.1515/crll.2005.2005.584.117
|
| 3 |
R AAdams, J J FFournier. Sobolev Spaces. 2nd ed. Pure Appl Math, Vol 140. Amsterdam: Elsevier/Academic Press, 2003
|
| 4 |
YAhmida, IChlebicka, PGwiazda, AYoussfi. Gossez’s approximation theorems in the Musielak–Orlicz–Sobolev spaces. J Funct Anal, 2018, 275: 2538–2571
https://doi.org/10.1016/j.jfa.2018.05.015
|
| 5 |
ZBirnbaum, WOrlicz. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math, 1931, 3: 1–67
https://doi.org/10.4064/sm-3-1-1-67
|
| 6 |
JBourgain, HBrezis, PMironescu. Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations. Amsterdam: IOS, 2001, 439–455
|
| 7 |
JBourgain, HBrezis, PMironescu. Limiting embedding theorems for Ws,p when s↑1 and applications. J Anal Math, 2002, 87: 77–101
https://doi.org/10.1007/BF02868470
|
| 8 |
HBrezis. How to recognize constant functions. A connection with Sobolev spaces. Russian Math Surveys, 2002, 57: 693–708
https://doi.org/10.1070/RM2002v057n04ABEH000533
|
| 9 |
MColombo, GMingione. Bounded minimisers of double phase variational integrals. Arch Ration Mech Anal, 2015, 218: 219–273
https://doi.org/10.1007/s00205-015-0859-9
|
| 10 |
MColombo, GMingione. Calderón–Zygmund estimates and non-uniformly elliptic operators. J Funct Anal, 2016, 270: 1416–1478
https://doi.org/10.1016/j.jfa.2015.06.022
|
| 11 |
D VCruz-Uribe, AFiorenza. Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Appl Numer Harmon Anal. Heidelberg: Birkhäuser/Springer, 2013
|
| 12 |
LDiening. Maximal function on generalized Lebesgue spaces Lp(⋅). Math Inequal Appl, 2004, 7: 245–253
https://doi.org/10.7153/mia-07-27
|
| 13 |
LDiening. Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657–700
https://doi.org/10.1016/j.bulsci.2003.10.003
|
| 14 |
LDiening, PHarjulehto, PHästö, YMizuta, TShimomura. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann Acad Sci Fenn Math, 2009, 34: 503–522
|
| 15 |
LDiening, PHarjulehto, PHästö, MRůžička. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Heidelberg: Springer, 2011
https://doi.org/10.1007/978-3-642-18363-8
|
| 16 |
LDiening, PHästö. Variable exponent trace spaces. Studia Math, 2007, 183: 127–141
https://doi.org/10.4064/sm183-2-3
|
| 17 |
JFernández Bonder, A MSalort. Fractional order Orlicz–Sobolev spaces. arXiv: 1707.03267
|
| 18 |
RFerreira, PHästö, A MRibeiro. Characterization of generalized Orlicz spaces. Commun Contemp Math, 2018,
https://doi.org/10.1142/S0219199718500797
|
| 19 |
AFiorenza. A mean continuity type result for certain Sobolev spaces with variable exponent. Commun Contemp Math, 2002, 4: 587–605
https://doi.org/10.1142/S0219199702000762
|
| 20 |
DGallardo. Orlicz spaces for which the Hardy–Littlewood maximal operator is bounded. Publ Mat, 1988, 32: 261–266
https://doi.org/10.5565/PUBLMAT_32288_09
|
| 21 |
LGrafakos. Classical Fourier Analysis. 3rd ed. Graduate Texts in Math, Vol 249. New York: Springer, 2014
|
| 22 |
PHarjulehto, PHästö, RKlén. Generalized Orlicz spaces and related PDE. Nonlinear Anal, 2016, 143: 155–173
https://doi.org/10.1016/j.na.2016.05.002
|
| 23 |
PHarjulehto, PHästö, OToivanen. Hölder regularity of quasiminimizers under generalized growth conditions. Calc Var Partial Differential Equations, 2017, 56(2): Art 22 (26pp)
|
| 24 |
PHästö. The maximal operator on generalized Orlicz spaces. J Funct Anal, 2015, 269: 4038–4048
https://doi.org/10.1016/j.jfa.2015.10.002
|
| 25 |
PHästö, A MRibeiro. Characterization of the variable exponent Sobolev norm without derivatives. Commun Contemp Math, 2017, 19: 1650022 (13pp)
|
| 26 |
VKokilashvili, MKrbec. Weighted Inequalities in Lorentz and Orlicz Spaces. River Edge: World Scientific Publishing Co Inc, 1991
https://doi.org/10.1142/1367
|
| 27 |
M AKrasnosel’skiǐ, Ja BRutickiǐ. Convex Functions and Orlicz Spaces. Groningen: P Noordhoff Ltd, 1961
|
| 28 |
JMusielak. Orlicz Spaces and Modular Spaces. Lecture Notes in Math, Vol 1034. Berlin: Springer-Verlag, 1983
https://doi.org/10.1007/BFb0072210
|
| 29 |
HNakano. Topology of Linear Topological Spaces. Tokyo: Maruzen Co Ltd, 1951
|
| 30 |
HNakano. Modulared Semi-Ordered Linear Spaces. Tokyo: Maruzen Co Ltd, 1951
|
| 31 |
TOhno, TShimomura. Musielak–Orlicz–Sobolev spaces on metric measure spaces. Czechoslovak Math J, 2015, 65(140): 435–474
https://doi.org/10.1007/s10587-015-0187-0
|
| 32 |
TOhno, TShimomura. Musielak–Orlicz–Sobolev spaces with zero boundary values on metric measure spaces. Czechoslovak Math J, 2016, 66(141): 371–394
https://doi.org/10.1007/s10587-016-0262-1
|
| 33 |
WOrlicz. Über eine gewisse Klasse von Räumen vom Typus B. Bull Int Acad Pol Ser A, 1932, 8: 207–220
|
| 34 |
M MRao, ZRen. Theory of Orlicz Spaces. New York: Marcel Dekker, 1991
|
| 35 |
M MRao, ZRen. Applications of Orlicz Spaces. New York: Marcel Dekker, 2002
|
| 36 |
MSquassina, BVolzone. Bourgain–Brézis–Mironescu formula for magnetic operators. C R Math Acad Sci Paris, 2016, 354: 825–831
https://doi.org/10.1016/j.crma.2016.04.013
|
| 37 |
B OTuresson. Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Math, Vol 1736. Berlin: Springer-Verlag, 2000
https://doi.org/10.1007/BFb0103908
|
| 38 |
DYang, YLiang, L DKy. Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math, Vol 2182. Cham: Springer, 2017
https://doi.org/10.1007/978-3-319-54361-1
|
| 39 |
AYoussfi, YAhmida. Some approximation results in Musielak–Orlicz spaces. arXiv: 1708.02453
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|