Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (1) : 1-16    https://doi.org/10.1007/s11464-019-0748-x
RESEARCH ARTICLE
Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor
Yannan CHEN1, Shenglong HU2, Liqun QI3(), Wennan ZOU4
1. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
2. Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
3. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
4. Institute for Advanced Study, Nanchang University, Nanchang 330031, China
 Download: PDF(266 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Third order three-dimensional symmetric and traceless tensors play an important role in physics and tensor representation theory. A minimal integrity basis of a third order three-dimensional symmetric and traceless tensor has four invariants with degrees two, four, six, and ten, respectively. In this paper, we show that any minimal integrity basis of a third order three-dimensional symmetric and traceless tensor is also an irreducible function basis of that tensor, and there is no syzygy relation among the four invariants of that basis, i.e., these four invariants are algebraically independent.

Keywords Minimal integrity basis      irreducible function basis      symmetric and traceless tensor      syzygy     
Corresponding Author(s): Liqun QI   
Issue Date: 22 March 2019
 Cite this article:   
Yannan CHEN,Shenglong HU,Liqun QI, et al. Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor[J]. Front. Math. China, 2019, 14(1): 1-16.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0748-x
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I1/1
1 P AAbsil, RMahony, RSepulchre. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton Univ Press, 2008
https://doi.org/10.1515/9781400830244
2 DBump. Algebraic Geometry. Singapore: World Scientic, 1998
https://doi.org/10.1142/3873
3 YChen, LQi, E GVirga. Octupolar tensors for liquid crystals. J Phys A, 2018, 51: 025206
https://doi.org/10.1088/1751-8121/aa98a8
4 ZChen, JLiu, LQi, Q SZheng, W NZou. An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. J Math Phys, 2018, 59: 081703
https://doi.org/10.1063/1.5028307
5 GGaeta, E GVirga. Octupolar order in three dimensions. Eur Phys J E, 2016, 39: 113
https://doi.org/10.1140/epje/i2016-16113-7
6 B CHall. Lie Groups, Lie Algebras, and Representations. New York: Springer-Verlag, 2003
https://doi.org/10.1007/978-0-387-21554-9
7 JLiu, WDing, LQi, WZou. Isotropic polynomial invariants of the Hall tensor. Appl Math Mech, 2018, 39: 1845–1856
8 MOlive. Géométrie des espaces de tenseurs-Une approche effective appliquée à la mécanique des milieux continus. Doctoral Dissertation, Aix Marseille université, 2014
9 MOlive, NAuray. Isotropic invariants of completely symmetric third-order tensor. J Math Phys, 2014, 55: 092901
https://doi.org/10.1063/1.4895466
10 MOlive, BKolev, NAuray. A minimal integrity basis for the elasticity tensor. Arch Ration Mech Anal, 2017, 226: 1–31
11 P JOlver. Classical Invariant Theory. Cambridge: Cambridge Univ Press, 1999
https://doi.org/10.1017/CBO9780511623660
12 SPennisi, MTrovato. On the irreducibility of Professor G. F. Smith's representations for isotropic functions. Internat J Engrg Sci, 1987, 25: 1059–1065
13 LQi, HChen, YChen. Tensor Eigenvalues and Their Applications. New York: Springer, 2018
https://doi.org/10.1007/978-981-10-8058-6
14 I RShafarevich. Basic Algebraic Geometry. Berlin: Springer-Verlag, 1977
15 TShioda. On the graded ring of invariants of binary octavics. Amer J Math, 1967, 89: 1022–1046
16 G FSmith, GBao. Isotropic invariants of traceless symmetric tensors of orders three and four. Internat J Engrg Sci, 1997, 35: 1457–1462
17 A J MSpencer. Theory of invariants. In: Eringen A C, eds. Continuum Physics, Vol 1. New York: Academic Press, 1971, 239{353
https://doi.org/10.1016/B978-0-12-240801-4.50008-X
18 E BVinberg. A Course in Algebra. Grad Stud Math, Vol 56. Providence: Amer Math Soc, 2003
19 HWeyl. The Classical Groups. Princeton: Princeton Univ Press, 1939
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed