Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (2) : 421-433    https://doi.org/10.1007/s11464-019-0760-1
RESEARCH ARTICLE
On multivariable Zassenhaus formula
Linsong WANG1, Yun GAO2, Naihuan JING1,3()
1. School of Mathematics, South China University of Technology, Guangzhou 510640, China
2. Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
3. Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
 Download: PDF(284 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We give a recursive algorithm to compute the multivariable Zassenhaus formula eX1+X2+...+Xn=eX1eX2...eXnΠk=2eWk and derive ane effective recursion formula of Wk.

Keywords Baker-Campbell-Hausdor_ formula      Zassenhaus formula     
Corresponding Author(s): Naihuan JING   
Issue Date: 14 May 2019
 Cite this article:   
Linsong WANG,Yun GAO,Naihuan JING. On multivariable Zassenhaus formula[J]. Front. Math. China, 2019, 14(2): 421-433.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0760-1
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I2/421
1 G EAndrews. The Theory of Partitions. New York: Addison-Wesley Publishing, 1976
2 PBader, AIserles, KKropielnicka, PSingh. Effective approximation for the semiclassical Schrödinger equation. Found Comput Math, 2014, 14: 689–720
https://doi.org/10.1007/s10208-013-9182-8
3 H FBaker. Alternants and continuous groups. Proc Lond Math Soc, 1905, 3(2): 24–47
https://doi.org/10.1112/plms/s2-3.1.24
4 J ECampbell. On a law of combination of operators. Proc Lond Math Soc, 1898, 29: 14–32
https://doi.org/10.1112/plms/s1-29.1.14
5 FCasas, AMurua, MNadinic. Effcient computation of the Zassenhaus formula. Commun Comput Phys, 2012, 183: 2386–2391
https://doi.org/10.1016/j.cpc.2012.06.006
6 JGeiser, GTanoglu. Operator-splitting methods via the Zassenhaus product formula. J Appl Math Comput, 2011, 217: 4557–4575
https://doi.org/10.1016/j.amc.2010.11.007
7 FHausdorff. Die symbolische Exponentialformel in der Gruppentheorie. Sitzungsber Sächsischen Akad Wissenschaft Leipzig Math Nat Sci Sect Band 116, 1906, 58: 19–48
8 TKimura, Explicit description of the Zassenhaus formula. Prog Theor Exp Phys, 2017, 4: 041A03
https://doi.org/10.1093/ptep/ptx044
9 WMagnus. On the exponential solution of differential equations for a linear operator. Comm Pure Appl Math, 1954, 7: 649–673
https://doi.org/10.1002/cpa.3160070404
10 NQuesada, J ESipe. Effects of time ordering in quantum nonlinear optics. Phys Rev A, 2014, 90: 063840
https://doi.org/10.1103/PhysRevA.90.063840
11 CQuesne. Disentangling q-exponentials: a general approach. Internat J Theoret Phys, 2004, 43: 545–559
https://doi.org/10.1023/B:IJTP.0000028885.42890.f5
12 DScholz, MWeyrauch. A note on the Zassenhaus product formula. J Math Phys, 2006, 47: 033505
https://doi.org/10.1063/1.2178586
13 MSuzuki. On the convergence of exponential operators|the Zassenhaus formula, BCH formula and systematic approximants. Comm Math Phys, 1977, 57: 193–200
https://doi.org/10.1007/BF01614161
14 MWeyrauch, DScholz. Computing the Baker-Campbell-Hausdorff series and the Zassenhaus product. Commun Comput Phys, 2009, 180: 1558–1565
https://doi.org/10.1016/j.cpc.2009.04.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed