Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 521-534    https://doi.org/10.1007/s11464-019-0767-7
RESEARCH ARTICLE
Non-leaving-face property for marked surfaces
Thomas BRÜSTLE1, Jie ZHANG2()
1. Département de Mathématiques, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
2. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(610 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the polytope arising from a marked surface by flips of triangulations. D. D. Sleator, R. E. Tarjan, and W. P. Thurston [J. Amer. Math. Soc., 1988, 1(3): 647{681] studied the diameter of the associahedron, which is the polytope arising from a marked disc by flips of triangulations. They showed that every shortest path between two vertices in a face does not leave that face. We give a new method, which is different from the one used by V. Disarlo and H. Parlier [arXiv: 1411.4285] to establish the same non-leaving-face property for all unpunctured marked surfaces.

Keywords Marked surface      non-leaving-face property      exchange graph     
Corresponding Author(s): Jie ZHANG   
Issue Date: 10 July 2019
 Cite this article:   
Thomas BRÜSTLE,Jie ZHANG. Non-leaving-face property for marked surfaces[J]. Front. Math. China, 2019, 14(3): 521-534.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0767-7
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/521
1 T Brüstle, Y Qiu. Tagged mapping class groups I: Auslander-Reiten translation. Math Z, 2015, 279(3): 1103–1120
https://doi.org/10.1007/s00209-015-1405-z
2 T Brüstle , D Yang. Ordered exchange graphs. In: Benson D J, Krause H, Skowro?nski A, eds. Advances in Representation Theory of Algebras. EMS Ser Congr Rep. Z?urich: Eur Math Soc, 2013, 135–193
https://doi.org/10.4171/125-1/5
3 T Brüstle, J Zhang. On the cluster category of a marked surface without punctures. Algebra Number Theory, 2011, 5(4): 529–566
https://doi.org/10.2140/ant.2011.5.529
4 T, Brüstle J Zhang. A module-theoretic interpretation of Schiffler's expansion formula. Comm Algebra, 2013, 41(1): 260–283
https://doi.org/10.1080/00927872.2011.629267
5 A B Buan, R Marsh, M Reineke, I Reiten, G Todorov. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572–618
https://doi.org/10.1016/j.aim.2005.06.003
6 C Ceballos, V Pilaud. The diameter of type D associahedra and the non-leaving-face property. European J Combin, 2016, 51: 109–124
7 F Chapoton, S Fomin, A Zelevinsky. Polytopal realizations of generalized associahedra. Canad Math Bull, 2002, 45(4): 537–566
https://doi.org/10.4153/CMB-2002-054-1
8 V Disarlo, H Parlier. The geometry of flip graphs and mapping class groups. arXiv: 1411.4285
9 S Fomin, M Shapiro, D Thurston. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83–146
https://doi.org/10.1007/s11511-008-0030-7
10 S Fomin, A Zelevinsky. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497–529
https://doi.org/10.1090/S0894-0347-01-00385-X
11 S Fomin, A Zelevinsky. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63–121
https://doi.org/10.1007/s00222-003-0302-y
12 C Hohlweg, C E M C Lange, H Thomas. Permutahedra and generalized associahedra. Adv Math, 2011, 226(1): 608–640
https://doi.org/10.1016/j.aim.2010.07.005
13 D Labardini-Fragoso. Quivers with potentials associated to triangulated surfaces. Proc Lond Math Soc (3), 2009, 98(3): 797–839
https://doi.org/10.1112/plms/pdn051
14 H Parlier, L Pournin. Once punctured disks, non-convex polygons, and pointihedra. arXiv: 1602.04576
15 H Parlier, L Pournin. Flip-graph moduli spaces of filling surfaces. J Eur Math Soc (JEMS), 2017, 19(9): 2697–2737
https://doi.org/10.4171/JEMS/726
16 H Parlier, L Pournin. Modular flip-graphs of one-holed surfaces. European J Combin, 2018, 67: 158–173
https://doi.org/10.1016/j.ejc.2017.07.003
17 L Pournin. The diameter of associahedra. Adv Math, 2014, 259: 13–42
https://doi.org/10.1016/j.aim.2014.02.035
18 N Reading. Cambrian lattices. Adv Math, 2006, 205(2): 313–353
https://doi.org/10.1016/j.aim.2005.07.010
19 D D Sleator, R E Tarjan, W P Thurston. Rotation distance, triangulations, and hyperbolic geometry. J Amer Math Soc, 1988, 1(3): 647–681
https://doi.org/10.2307/1990951
20 N Williams. W-associahedra have the non-leaving-face property. European J Combin, 2017, 62: 272–285
https://doi.org/10.1016/j.ejc.2017.01.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed