Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 551-566    https://doi.org/10.1007/s11464-019-0772-x
RESEARCH ARTICLE
Continuity of functors with respect to generalized inductive limits
Jiajie HUA1(), Xiaochun FANG2, Xiao-Ming XU3
1. School of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China
2. Department of Mathematics, Tongji University, Shanghai 200092, China
3. School of Science, Shanghai Institute of Technology, Shanghai 201418, China
 Download: PDF(287 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let (Ai,|ϕi,i+1) be a generalized inductive system of a sequence (Ai) of unital separable C*-algebras, with A=limi(Ai,ϕi,i+1). Set ϕj,i=ϕi1,iooϕj+1,j+2oϕj,j+1 for all i>j: We prove that if ϕj,i are order zero completely positive contractions for all j and i>j; and L:=inf{λ|λσ(ϕj,i(1Aj))} for all j and i>j}>0; where σ(ϕj,i(1Aj)) is the spectrum of ϕj,i(1Aj) ; then limi(Cu(ai),Cu(ϕi,i+1))=Cu(A) ; where Cu(A) is a stable version of the Cuntz semigroup of C*-algebra A: Let (An,ϕm,n) be a generalized inductive system of C*-algebras, with the ϕm,n order zero completely positive contractions. We also prove that if the decomposition rank (nuclear dimension) of An is no more than some integer k for each n; then the decomposition rank (nuclear dimension) of A is also no more than k:

Keywords Completely positive map      order zero      generalized inductive limits      classification of C*-algebra     
Corresponding Author(s): Jiajie HUA   
Issue Date: 10 July 2019
 Cite this article:   
Jiajie HUA,Xiaochun FANG,Xiao-Ming XU. Continuity of functors with respect to generalized inductive limits[J]. Front. Math. China, 2019, 14(3): 551-566.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0772-x
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/551
1 R, Antoine F Perera, H Thiel. Tensor Products and Regularity Properties of Cuntz Semigroups. Mem Amer Math Soc, Vol 251, No 1199. Providence: Amer Math Soc, 2014
https://doi.org/10.1090/memo/1199
2 P, Ara F Perera, A S Toms. K-theory for operator algebras. Classification of C*-algebras. In: Ara P, Lledó F, Perera F, eds. Aspects of Operator Algebras and Applications. Contemp Math, Vol 534. Providence: Amer Math Soc, 2011, 1–71
https://doi.org/10.1090/conm/534/10521
3 B Blackadar. K-Theory for Operator Algebras. New York: Springer-Verlag, 1986
https://doi.org/10.1007/978-1-4613-9572-0
4 B Blackadar. Operator Algebras: Theory of C*-algebras and von Neumann Algebras. Operator Algebras and Non-Commutative Geometry, III. Encyclopaedia Math Sci, Vol 122. Berlin: Springer-Verlag, 2006
https://doi.org/10.1007/3-540-28517-2
5 B Blackadar, E Kirchberg. Generalize inductive limits of finite-dimensional C*-algebras. Math Ann, 1997, 307: 343–380
https://doi.org/10.1007/s002080050039
6 N Brown, F Perera, A S Toms. The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras. J Reine Angew Math, 2008, 621: 191–211
https://doi.org/10.1515/CRELLE.2008.062
7 K Coward, G A Elliott, C Ivanescu. The Cuntz semigroup as an invariant for C*-algebras. J Reine Angew Math, 2008, 623: 161–193
https://doi.org/10.1515/CRELLE.2008.075
8 J Cuntz. The structure of multiplication and addition in simple C*-algebras. Math Scand, 1977, 40: 215–233
https://doi.org/10.7146/math.scand.a-11691
9 G A Elliott. The classification problem for amenable C*-algebras. Proceedings of the International Congress of Mathematicians 1994. Basel: Birkh?auser, 1995, 922–932
https://doi.org/10.1007/978-3-0348-9078-6_85
10 G A Elliott, G Gong, H Lin, Z. NiuOn the classification of simple amenable C*-algebras with finite decomposition rank, II. arXiv: 1507.03437
11 G A Elliott, Z Niu. On the classification of simple amenable C*-algebras with finite decomposition rank. In: Doran R S, Park E, eds. Operator Algebras and Their Applications: A Tribute to Richard V. Kadison. Contemp Math, Vol 671. Providence: Amer Math Soc, 2016, 117–125
https://doi.org/10.1090/conm/671/13506
12 G A Elliott, A S Toms. Regularity properties in the classification program for separable amenable C*-algebras. Bull Amer Math Soc (N S), 2007, 45: 229–245
https://doi.org/10.1090/S0273-0979-08-01199-3
13 G Gong, H Lin, Z Niu. Classification of finite simple amenable Z-stable C*-algebras. arXiv: 1501.00135
14 E Kirchberg, W Winter. Covering dimension and quasidiagonality. Internat J Math, 2004, 15: 63–85
https://doi.org/10.1142/S0129167X04002119
15 H Lin. An Introduction to the Classification of Amenable C*-Algebras. River Edge: World Scientific, 2001
https://doi.org/10.1142/4751
16 H Lin. Asymptotically unitary equivalence and classification of simple amenable C*-algebras. Invent Math, 2011, 183(2): 385–450
https://doi.org/10.1007/s00222-010-0280-9
17 L Robert. The cone of functionals on the Cuntz semigroup. Math Scand, 2013, 113(2): 161–186
https://doi.org/10.7146/math.scand.a-15568
18 M Rrdam. Classification of nuclear, simple C*-algebras. In: Cuntz J, Jones V, eds. Operator Algebras and Non-Commutative Geometry, VII. Encyclopaedia Math Sci, Vol 126. Berlin: Springer-Verlag, 2002, 3–145
https://doi.org/10.1007/978-3-662-04825-2
19 Y Sato, S, White W Winter. Nuclear dimension and Z-stability. Invent Math, 2015, 202(2): 893–921
https://doi.org/10.1007/s00222-015-0580-1
20 A S Toms. On the classification problem for nuclear C*-algebras. Ann of Math (2), 2008, 167: 1029–1044
https://doi.org/10.4007/annals.2008.167.1029
21 W Winter. Simple C*-algebras with locally finite decomposition rank. J Funct Anal, 2007, 243(2): 394–425
22 W Winter. Decomposition rank and Z-stability. Invent Math, 2010, 179(2): 229–301
https://doi.org/10.1007/s00222-009-0216-4
23 W Winter. Nuclear dimension and Z-stability of pure C*-algebras. Invent Math, 2012, 187(2): 259–342
https://doi.org/10.1007/s00222-011-0334-7
24 W Winter, J Zacharias. Completely positive maps of order zero. Münster J Math, 2009, 2: 311–324
25 W Winter, J Zacharias. The nuclear dimension of C*-algebras. Adv Math, 2010, 224(2): 461–498
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed