|
|
|
Continuity of functors with respect to generalized inductive limits |
Jiajie HUA1( ), Xiaochun FANG2, Xiao-Ming XU3 |
1. School of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China 2. Department of Mathematics, Tongji University, Shanghai 200092, China 3. School of Science, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
|
|
Abstract Let be a generalized inductive system of a sequence (Ai) of unital separable C*-algebras, with . Set for all i>j: We prove that if are order zero completely positive contractions for all j and i>j; and for all j and i>j}>0; where is the spectrum of ; then ; where Cu(A) is a stable version of the Cuntz semigroup of C*-algebra A: Let be a generalized inductive system of C*-algebras, with the order zero completely positive contractions. We also prove that if the decomposition rank (nuclear dimension) of An is no more than some integer k for each n; then the decomposition rank (nuclear dimension) of A is also no more than k:
|
| Keywords
Completely positive map
order zero
generalized inductive limits
classification of C*-algebra
|
|
Corresponding Author(s):
Jiajie HUA
|
|
Issue Date: 10 July 2019
|
|
| 1 |
R, Antoine F Perera, H Thiel. Tensor Products and Regularity Properties of Cuntz Semigroups. Mem Amer Math Soc, Vol 251, No 1199. Providence: Amer Math Soc, 2014
https://doi.org/10.1090/memo/1199
|
| 2 |
P, Ara F Perera, A S Toms. K-theory for operator algebras. Classification of C*-algebras. In: Ara P, Lledó F, Perera F, eds. Aspects of Operator Algebras and Applications. Contemp Math, Vol 534. Providence: Amer Math Soc, 2011, 1–71
https://doi.org/10.1090/conm/534/10521
|
| 3 |
B Blackadar. K-Theory for Operator Algebras. New York: Springer-Verlag, 1986
https://doi.org/10.1007/978-1-4613-9572-0
|
| 4 |
B Blackadar. Operator Algebras: Theory of C*-algebras and von Neumann Algebras. Operator Algebras and Non-Commutative Geometry, III. Encyclopaedia Math Sci, Vol 122. Berlin: Springer-Verlag, 2006
https://doi.org/10.1007/3-540-28517-2
|
| 5 |
B Blackadar, E Kirchberg. Generalize inductive limits of finite-dimensional C*-algebras. Math Ann, 1997, 307: 343–380
https://doi.org/10.1007/s002080050039
|
| 6 |
N Brown, F Perera, A S Toms. The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras. J Reine Angew Math, 2008, 621: 191–211
https://doi.org/10.1515/CRELLE.2008.062
|
| 7 |
K Coward, G A Elliott, C Ivanescu. The Cuntz semigroup as an invariant for C*-algebras. J Reine Angew Math, 2008, 623: 161–193
https://doi.org/10.1515/CRELLE.2008.075
|
| 8 |
J Cuntz. The structure of multiplication and addition in simple C*-algebras. Math Scand, 1977, 40: 215–233
https://doi.org/10.7146/math.scand.a-11691
|
| 9 |
G A Elliott. The classification problem for amenable C*-algebras. Proceedings of the International Congress of Mathematicians 1994. Basel: Birkh?auser, 1995, 922–932
https://doi.org/10.1007/978-3-0348-9078-6_85
|
| 10 |
G A Elliott, G Gong, H Lin, Z. NiuOn the classification of simple amenable C*-algebras with finite decomposition rank, II. arXiv: 1507.03437
|
| 11 |
G A Elliott, Z Niu. On the classification of simple amenable C*-algebras with finite decomposition rank. In: Doran R S, Park E, eds. Operator Algebras and Their Applications: A Tribute to Richard V. Kadison. Contemp Math, Vol 671. Providence: Amer Math Soc, 2016, 117–125
https://doi.org/10.1090/conm/671/13506
|
| 12 |
G A Elliott, A S Toms. Regularity properties in the classification program for separable amenable C*-algebras. Bull Amer Math Soc (N S), 2007, 45: 229–245
https://doi.org/10.1090/S0273-0979-08-01199-3
|
| 13 |
G Gong, H Lin, Z Niu. Classification of finite simple amenable Z-stable C*-algebras. arXiv: 1501.00135
|
| 14 |
E Kirchberg, W Winter. Covering dimension and quasidiagonality. Internat J Math, 2004, 15: 63–85
https://doi.org/10.1142/S0129167X04002119
|
| 15 |
H Lin. An Introduction to the Classification of Amenable C*-Algebras. River Edge: World Scientific, 2001
https://doi.org/10.1142/4751
|
| 16 |
H Lin. Asymptotically unitary equivalence and classification of simple amenable C*-algebras. Invent Math, 2011, 183(2): 385–450
https://doi.org/10.1007/s00222-010-0280-9
|
| 17 |
L Robert. The cone of functionals on the Cuntz semigroup. Math Scand, 2013, 113(2): 161–186
https://doi.org/10.7146/math.scand.a-15568
|
| 18 |
M Rrdam. Classification of nuclear, simple C*-algebras. In: Cuntz J, Jones V, eds. Operator Algebras and Non-Commutative Geometry, VII. Encyclopaedia Math Sci, Vol 126. Berlin: Springer-Verlag, 2002, 3–145
https://doi.org/10.1007/978-3-662-04825-2
|
| 19 |
Y Sato, S, White W Winter. Nuclear dimension and Z-stability. Invent Math, 2015, 202(2): 893–921
https://doi.org/10.1007/s00222-015-0580-1
|
| 20 |
A S Toms. On the classification problem for nuclear C*-algebras. Ann of Math (2), 2008, 167: 1029–1044
https://doi.org/10.4007/annals.2008.167.1029
|
| 21 |
W Winter. Simple C*-algebras with locally finite decomposition rank. J Funct Anal, 2007, 243(2): 394–425
|
| 22 |
W Winter. Decomposition rank and Z-stability. Invent Math, 2010, 179(2): 229–301
https://doi.org/10.1007/s00222-009-0216-4
|
| 23 |
W Winter. Nuclear dimension and Z-stability of pure C*-algebras. Invent Math, 2012, 187(2): 259–342
https://doi.org/10.1007/s00222-011-0334-7
|
| 24 |
W Winter, J Zacharias. Completely positive maps of order zero. Münster J Math, 2009, 2: 311–324
|
| 25 |
W Winter, J Zacharias. The nuclear dimension of C*-algebras. Adv Math, 2010, 224(2): 461–498
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|