Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 645-659    https://doi.org/10.1007/s11464-019-0773-9
RESEARCH ARTICLE
Absence of eigenvalues for quasiperiodic Schrödinger type operators
Jiahao XU, Xin ZHAO()
Department of Mathematical Sciences, Nanjing University, Nanjing 210093, China
 Download: PDF(292 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We obtain the matrix-valued Schrödinger-type operators [Hα,θ] with Lipschitz potentials having no eigenvalues on the set {E: L(E)<δC,d(α,θ)}, where δ is an explicit function depending on the sampling function C(θ), dimension d, phase θ, and frequency α, and L(E) is the Lyapunov exponent.

Keywords Quasiperiodic Schrödinger type operators      absence of eigenvalues      singular continuous spectrum     
Corresponding Author(s): Xin ZHAO   
Issue Date: 10 July 2019
 Cite this article:   
Jiahao XU,Xin ZHAO. Absence of eigenvalues for quasiperiodic Schrödinger type operators[J]. Front. Math. China, 2019, 14(3): 645-659.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0773-9
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/645
1 S Aubry, G André. Analyticity breaking and Anderson localization in incommensurate lattices. Ann Israel Phys Soc, 1980, 3: 33–164
2 A Avila. Almost reducibility and absolute continuity I. arXiv: 1006.0704
3 A Avila, D Damanik, Z Zhang. Singular density of states measure for subshift and quasi-periodic Schrödinger operators. Comm Math Phys, 2014, 330: 469–498
https://doi.org/10.1007/s00220-014-1968-2
4 A Avila, B Fayad, R Krikorian. A KAM scheme for SL(2,ℝ) cocycles with Liouvillean frequencies. Geom Funct Anal, 2011, 21(5): 1001–1019
https://doi.org/10.1007/s00039-011-0135-6
5 A Avila, S Jitomirskaya. The ten Martini problem. Ann of Math, 2009, 170: 303–342
https://doi.org/10.4007/annals.2009.170.303
6 A Avila, S Jitomirskaya. Almost localization and almost reducibility. J Eur Math Soc (JEMS), 2010, 12: 93–131
https://doi.org/10.4171/JEMS/191
7 A Avila, J You, Q Zhou. Sharp phase transitions for the almost Mathieu operator. Duke Math J, 2017, 166(14): 2697–2718
https://doi.org/10.1215/00127094-2017-0013
8 J Avron, B Simon. Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math J, 1983, 50: 369–391
https://doi.org/10.1215/S0012-7094-83-05016-0
9 D Damanik. A version of Gordon's theorem for multi-dimensional Schrödinger operators. Trans Amer Math Soc, 2004, 356: 495–507
https://doi.org/10.1090/S0002-9947-03-03442-1
10 A Furman. On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann Inst Henri Poincaré Probab Stat, 1997, 33: 797–815
https://doi.org/10.1016/S0246-0203(97)80113-6
11 A Y Gordon, S Jitomirskaya, Y Last, B Simon. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math, 1997, 178(2): 169–183
https://doi.org/10.1007/BF02392693
12 R Han, S Jitomirskaya. Full measure reducibility and localization for Jacobi operators: a topological criterion. Adv Math, 2017, 319: 224–250
https://doi.org/10.1016/j.aim.2017.08.026
13 A Haro, J Puig. A Thouless formula and Aubry duality for long-range Schrödinger skew-products. Nonlinearity, 2013, 26: 1163–1187
https://doi.org/10.1088/0951-7715/26/5/1163
14 X Hou, J You. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent Math, 2012, 190(1): 209–260
https://doi.org/10.1007/s00222-012-0379-2
15 S Jitomirskaya. Almost everything about the almost Mathieu operator, II. In: Proceedings of XI International Congress of Mathematical Physics. Cambridge: Int Press, 1994, 373–382
16 S Jitomirskaya. Ergodic Schrödinger operator (on one foot). In: Proc Sympos Pure Math, Vol 76. Providence: Amer Math Soc, 2007, 613–647
https://doi.org/10.1090/pspum/076.2/2307750
17 S Jitomirskaya, I Kachkovskiy. L2-reducibility and localization for quasiperiodic operators. Math Res Lett, 2016, 23(2): 431–444
https://doi.org/10.4310/MRL.2016.v23.n2.a7
18 S Jitomirskaya, W Liu. Arithmetic spectral transitions for the Maryland model. Comm Pure Appl Math, 2017, 70(6): 1025–1051
https://doi.org/10.1002/cpa.21688
19 S Jitomirskaya, C Marx. Dynamics and spectral theory of quasi-periodic Schrödingertype operators. arXiv: 1503,05740vl
20 S Jitomirskaya, F Yang. Singular continuous spectrum for singular potentials. Comm Math Phys, 2016, 351(3): 1–9
https://doi.org/10.1007/s00220-016-2823-4
21 S Kotani, B Simon. Stochastic Schrödinger operators and Jacobi matrices on the strip. Comm Math Phys, 1988, 119: 403–429
https://doi.org/10.1007/BF01218080
22 V A Mandelshtam, S Y Zhitomirskaya. 1D-quasiperiodic operators. Latent symmetries. Comm Math Phys, 1991, 139(3): 589–604
https://doi.org/10.1007/BF02101881
23 V I Oseledets. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov Mat Obsc, 1968, 19: 179–210
24 D Ruelle. Ergodic theory of diérentiable dynamical systems. Publ Math Inst Hautes Études Sci, 1979, 50: 27–58
https://doi.org/10.1007/BF02684768
25 J You, S Zhang, Q Zhou. Point spectrum for quasi-periodic long range operators. J Spectr Theory, 2014, 4: 769–781
https://doi.org/10.4171/JST/85
26 J You, Q Zhou. Embedding of analytic quasi-periodic cocycles into analytic quasiperiodic linear systems and its applications. Comm Math Phys, 2013, 323(3): 975–1005
https://doi.org/10.1007/s00220-013-1800-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed