|
|
Absence of eigenvalues for quasiperiodic Schrödinger type operators |
Jiahao XU, Xin ZHAO( ) |
Department of Mathematical Sciences, Nanjing University, Nanjing 210093, China |
|
|
Abstract We obtain the matrix-valued Schrödinger-type operators [Hα,θ] with Lipschitz potentials having no eigenvalues on the set {E: L(E)<δC,d(α,θ)}, where δ is an explicit function depending on the sampling function C(θ), dimension d, phase θ, and frequency α, and L(E) is the Lyapunov exponent.
|
Keywords
Quasiperiodic Schrödinger type operators
absence of eigenvalues
singular continuous spectrum
|
Corresponding Author(s):
Xin ZHAO
|
Issue Date: 10 July 2019
|
|
1 |
S Aubry, G André. Analyticity breaking and Anderson localization in incommensurate lattices. Ann Israel Phys Soc, 1980, 3: 33–164
|
2 |
A Avila. Almost reducibility and absolute continuity I. arXiv: 1006.0704
|
3 |
A Avila, D Damanik, Z Zhang. Singular density of states measure for subshift and quasi-periodic Schrödinger operators. Comm Math Phys, 2014, 330: 469–498
https://doi.org/10.1007/s00220-014-1968-2
|
4 |
A Avila, B Fayad, R Krikorian. A KAM scheme for SL(2,ℝ) cocycles with Liouvillean frequencies. Geom Funct Anal, 2011, 21(5): 1001–1019
https://doi.org/10.1007/s00039-011-0135-6
|
5 |
A Avila, S Jitomirskaya. The ten Martini problem. Ann of Math, 2009, 170: 303–342
https://doi.org/10.4007/annals.2009.170.303
|
6 |
A Avila, S Jitomirskaya. Almost localization and almost reducibility. J Eur Math Soc (JEMS), 2010, 12: 93–131
https://doi.org/10.4171/JEMS/191
|
7 |
A Avila, J You, Q Zhou. Sharp phase transitions for the almost Mathieu operator. Duke Math J, 2017, 166(14): 2697–2718
https://doi.org/10.1215/00127094-2017-0013
|
8 |
J Avron, B Simon. Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math J, 1983, 50: 369–391
https://doi.org/10.1215/S0012-7094-83-05016-0
|
9 |
D Damanik. A version of Gordon's theorem for multi-dimensional Schrödinger operators. Trans Amer Math Soc, 2004, 356: 495–507
https://doi.org/10.1090/S0002-9947-03-03442-1
|
10 |
A Furman. On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann Inst Henri Poincaré Probab Stat, 1997, 33: 797–815
https://doi.org/10.1016/S0246-0203(97)80113-6
|
11 |
A Y Gordon, S Jitomirskaya, Y Last, B Simon. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math, 1997, 178(2): 169–183
https://doi.org/10.1007/BF02392693
|
12 |
R Han, S Jitomirskaya. Full measure reducibility and localization for Jacobi operators: a topological criterion. Adv Math, 2017, 319: 224–250
https://doi.org/10.1016/j.aim.2017.08.026
|
13 |
A Haro, J Puig. A Thouless formula and Aubry duality for long-range Schrödinger skew-products. Nonlinearity, 2013, 26: 1163–1187
https://doi.org/10.1088/0951-7715/26/5/1163
|
14 |
X Hou, J You. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent Math, 2012, 190(1): 209–260
https://doi.org/10.1007/s00222-012-0379-2
|
15 |
S Jitomirskaya. Almost everything about the almost Mathieu operator, II. In: Proceedings of XI International Congress of Mathematical Physics. Cambridge: Int Press, 1994, 373–382
|
16 |
S Jitomirskaya. Ergodic Schrödinger operator (on one foot). In: Proc Sympos Pure Math, Vol 76. Providence: Amer Math Soc, 2007, 613–647
https://doi.org/10.1090/pspum/076.2/2307750
|
17 |
S Jitomirskaya, I Kachkovskiy. L2-reducibility and localization for quasiperiodic operators. Math Res Lett, 2016, 23(2): 431–444
https://doi.org/10.4310/MRL.2016.v23.n2.a7
|
18 |
S Jitomirskaya, W Liu. Arithmetic spectral transitions for the Maryland model. Comm Pure Appl Math, 2017, 70(6): 1025–1051
https://doi.org/10.1002/cpa.21688
|
19 |
S Jitomirskaya, C Marx. Dynamics and spectral theory of quasi-periodic Schrödingertype operators. arXiv: 1503,05740vl
|
20 |
S Jitomirskaya, F Yang. Singular continuous spectrum for singular potentials. Comm Math Phys, 2016, 351(3): 1–9
https://doi.org/10.1007/s00220-016-2823-4
|
21 |
S Kotani, B Simon. Stochastic Schrödinger operators and Jacobi matrices on the strip. Comm Math Phys, 1988, 119: 403–429
https://doi.org/10.1007/BF01218080
|
22 |
V A Mandelshtam, S Y Zhitomirskaya. 1D-quasiperiodic operators. Latent symmetries. Comm Math Phys, 1991, 139(3): 589–604
https://doi.org/10.1007/BF02101881
|
23 |
V I Oseledets. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov Mat Obsc, 1968, 19: 179–210
|
24 |
D Ruelle. Ergodic theory of diérentiable dynamical systems. Publ Math Inst Hautes Études Sci, 1979, 50: 27–58
https://doi.org/10.1007/BF02684768
|
25 |
J You, S Zhang, Q Zhou. Point spectrum for quasi-periodic long range operators. J Spectr Theory, 2014, 4: 769–781
https://doi.org/10.4171/JST/85
|
26 |
J You, Q Zhou. Embedding of analytic quasi-periodic cocycles into analytic quasiperiodic linear systems and its applications. Comm Math Phys, 2013, 323(3): 975–1005
https://doi.org/10.1007/s00220-013-1800-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|