|
|
Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting |
Xianming HOU1, Huoxiong WU2( ) |
1. School of Mathematics and Statistics, Linyi University, Linyi 276005, China 2. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
|
|
Abstract We establish the limiting weak type behaviors of Riesz transforms associated to the Bessel operators on ℝ+; which are closely related to the best constants of the weak type (1; 1) estimates for such operators. Meanwhile, the corresponding results for Hardy-Littlewood maximal operator and fractional maximal operator in Bessel setting are also obtained.
|
Keywords
Limiting weak-type behaviors
Bessel operators
Riesz transforms
maximal operators
|
Corresponding Author(s):
Huoxiong WU
|
Issue Date: 10 July 2019
|
|
1 |
J Betancor, A Chicco Ruiz, J Fariña, L Rodríuez-Mesa. Maximal operators, Riesz transforms and Littlewood-Paley functions associated with Bessel operators on BMO. J Math Anal Appl, 2010, 363(1): 310–326
https://doi.org/10.1016/j.jmaa.2009.08.006
|
2 |
J, Betancor J Fariña, D Buraczewski, T Martínez, J Torrea. Riesz transform related to Bessel operators. Proc Roy Soc Edinburgh Sect A, 2007, 137(4): 701–725
https://doi.org/10.1017/S0308210505001034
|
3 |
J Betancor, E Harboure, A Nowak, B Viviani. Mapping properties of functional operators in harmonic analysis related to Bessel operators. Studia Math, 2010, 197(2): 101–140
https://doi.org/10.4064/sm197-2-1
|
4 |
R Coifman, G Weiss. Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer-Verlag, 1971
https://doi.org/10.1007/BFb0058946
|
5 |
B Davis. On the weak type (1; 1) inequality for conjugate functions. Proc Amer Math Soc, 1974, 44(2): 307–311
https://doi.org/10.2307/2040426
|
6 |
Y Ding, X Lai. Behavior of bounds of singular integrals for large dimension. Forum Math, 2016, 28(6): 1015–1030
https://doi.org/10.1515/forum-2015-0166
|
7 |
Y Ding, X Lai. L1-Dini conditions and limiting behavior of weak type estimates for singular integrals. Rev Mat Iberoam, 2017, 33(4): 1267–1284
https://doi.org/10.4171/RMI/971
|
8 |
Y Ding, X. LaiWeak type (1; 1) behavior for the maximal operator with L1-Dini kernel. Potential Anal, 2017, 47(2): 169–187
https://doi.org/10.1007/s11118-017-9612-3
|
9 |
L Grafakos, J Kinnunen. Sharp inequalities for maximal functions associated with general measures. Proc Roy Soc Edinburgh Sect A, 1998, 128(4): 717–723
https://doi.org/10.1017/S0308210500021739
|
10 |
X Hou, H Wu. On the limiting weak-type behaviors for maximal operators associated to power weighted measure. Canad Math Bull, 2019, 62(2): 313–326
https://doi.org/10.4153/CMB-2018-017-2
|
11 |
J Hu, X Huang. A note on the limiting weak-type behavior for maximal operators. Proc Amer Math Soc, 2008, 136(5): 1599–1607
https://doi.org/10.1090/S0002-9939-08-09313-1
|
12 |
P Janakiraman. Weak-type estimates for singular integral and the Riesz transform. Indiana Univ Math J, 2004, 53(2): 533–555
https://doi.org/10.1512/iumj.2004.53.2372
|
13 |
P Janakiraman. Limiting weak-type behavior for singular integral and maximal operators. Trans Amer Math Soc, 2006, 358(5): 1937–1952
https://doi.org/10.1090/S0002-9947-05-04097-3
|
14 |
A Melas. The best constant for the centered Hardy-Littlewood maximal inequality. Ann of Math, 2003, 157(2): 647–688
https://doi.org/10.4007/annals.2003.157.647
|
15 |
B Muckenhoupt, E Stein. Classical expansions and their relation to conjugate harmonic functions. Trans Amer Math Soc, 1965, 118: 17–92
https://doi.org/10.2307/1993944
|
16 |
W Pan. Fractional integrals on spaces of homogeneous type. Approx Theory Appl, 1992, 8(1): 1–15
|
17 |
E Stein, J Strömberg. Behavior of maximal functions in ℝn for large n: Ark Mat, 1983, 21(2): 259–269
https://doi.org/10.1007/BF02384314
|
18 |
M Villani. Riesz transforms associated to Bessel operators. Illinois J Math, 2008, 52(1): 77–89
https://doi.org/10.1215/ijm/1242414122
|
19 |
H Wu, D Yang, J Zhang. Oscillation and variation for semigroups associated with Bessel operators. J Math Anal Appl, 2016, 443(2): 848–867
https://doi.org/10.1016/j.jmaa.2016.05.044
|
20 |
H Wu, D Yang, J Zhang. Oscillation and variation for Riesz transform associated with Bessel operators. Proc Roy Soc Edinburgh Sect A, 2019, 149(1): 169–190
https://doi.org/10.1017/S0308210518000215
|
21 |
D C Yang, D Y Yang. Real-variable characterizations of Hardy spaces associated with Bessel operators. Anal Appl, 2011, 9(3): 345–368
https://doi.org/10.1142/S021953051100187X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|