Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 535-550    https://doi.org/10.1007/s11464-019-0774-8
RESEARCH ARTICLE
Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting
Xianming HOU1, Huoxiong WU2()
1. School of Mathematics and Statistics, Linyi University, Linyi 276005, China
2. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
 Download: PDF(288 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We establish the limiting weak type behaviors of Riesz transforms associated to the Bessel operators on ℝ+; which are closely related to the best constants of the weak type (1; 1) estimates for such operators. Meanwhile, the corresponding results for Hardy-Littlewood maximal operator and fractional maximal operator in Bessel setting are also obtained.

Keywords Limiting weak-type behaviors      Bessel operators      Riesz transforms      maximal operators     
Corresponding Author(s): Huoxiong WU   
Issue Date: 10 July 2019
 Cite this article:   
Xianming HOU,Huoxiong WU. Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting[J]. Front. Math. China, 2019, 14(3): 535-550.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0774-8
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/535
1 J Betancor, A Chicco Ruiz, J Fariña, L Rodríuez-Mesa. Maximal operators, Riesz transforms and Littlewood-Paley functions associated with Bessel operators on BMO. J Math Anal Appl, 2010, 363(1): 310–326
https://doi.org/10.1016/j.jmaa.2009.08.006
2 J, Betancor J Fariña, D Buraczewski, T Martínez, J Torrea. Riesz transform related to Bessel operators. Proc Roy Soc Edinburgh Sect A, 2007, 137(4): 701–725
https://doi.org/10.1017/S0308210505001034
3 J Betancor, E Harboure, A Nowak, B Viviani. Mapping properties of functional operators in harmonic analysis related to Bessel operators. Studia Math, 2010, 197(2): 101–140
https://doi.org/10.4064/sm197-2-1
4 R Coifman, G Weiss. Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer-Verlag, 1971
https://doi.org/10.1007/BFb0058946
5 B Davis. On the weak type (1; 1) inequality for conjugate functions. Proc Amer Math Soc, 1974, 44(2): 307–311
https://doi.org/10.2307/2040426
6 Y Ding, X Lai. Behavior of bounds of singular integrals for large dimension. Forum Math, 2016, 28(6): 1015–1030
https://doi.org/10.1515/forum-2015-0166
7 Y Ding, X Lai. L1-Dini conditions and limiting behavior of weak type estimates for singular integrals. Rev Mat Iberoam, 2017, 33(4): 1267–1284
https://doi.org/10.4171/RMI/971
8 Y Ding, X. LaiWeak type (1; 1) behavior for the maximal operator with L1-Dini kernel. Potential Anal, 2017, 47(2): 169–187
https://doi.org/10.1007/s11118-017-9612-3
9 L Grafakos, J Kinnunen. Sharp inequalities for maximal functions associated with general measures. Proc Roy Soc Edinburgh Sect A, 1998, 128(4): 717–723
https://doi.org/10.1017/S0308210500021739
10 X Hou, H Wu. On the limiting weak-type behaviors for maximal operators associated to power weighted measure. Canad Math Bull, 2019, 62(2): 313–326
https://doi.org/10.4153/CMB-2018-017-2
11 J Hu, X Huang. A note on the limiting weak-type behavior for maximal operators. Proc Amer Math Soc, 2008, 136(5): 1599–1607
https://doi.org/10.1090/S0002-9939-08-09313-1
12 P Janakiraman. Weak-type estimates for singular integral and the Riesz transform. Indiana Univ Math J, 2004, 53(2): 533–555
https://doi.org/10.1512/iumj.2004.53.2372
13 P Janakiraman. Limiting weak-type behavior for singular integral and maximal operators. Trans Amer Math Soc, 2006, 358(5): 1937–1952
https://doi.org/10.1090/S0002-9947-05-04097-3
14 A Melas. The best constant for the centered Hardy-Littlewood maximal inequality. Ann of Math, 2003, 157(2): 647–688
https://doi.org/10.4007/annals.2003.157.647
15 B Muckenhoupt, E Stein. Classical expansions and their relation to conjugate harmonic functions. Trans Amer Math Soc, 1965, 118: 17–92
https://doi.org/10.2307/1993944
16 W Pan. Fractional integrals on spaces of homogeneous type. Approx Theory Appl, 1992, 8(1): 1–15
17 E Stein, J Strömberg. Behavior of maximal functions in ℝn for large n: Ark Mat, 1983, 21(2): 259–269
https://doi.org/10.1007/BF02384314
18 M Villani. Riesz transforms associated to Bessel operators. Illinois J Math, 2008, 52(1): 77–89
https://doi.org/10.1215/ijm/1242414122
19 H Wu, D Yang, J Zhang. Oscillation and variation for semigroups associated with Bessel operators. J Math Anal Appl, 2016, 443(2): 848–867
https://doi.org/10.1016/j.jmaa.2016.05.044
20 H Wu, D Yang, J Zhang. Oscillation and variation for Riesz transform associated with Bessel operators. Proc Roy Soc Edinburgh Sect A, 2019, 149(1): 169–190
https://doi.org/10.1017/S0308210518000215
21 D C Yang, D Y Yang. Real-variable characterizations of Hardy spaces associated with Bessel operators. Anal Appl, 2011, 9(3): 345–368
https://doi.org/10.1142/S021953051100187X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed