Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (5) : 957-966    https://doi.org/10.1007/s11464-019-0788-2
RESEARCH ARTICLE
Arithmetic progressions in self-similar sets
Lifeng XI(), Kan JIANG, Qiyang PEI
Department of Mathematics, Ningbo University, Ningbo 315211, China
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Given a sequence {bi}i=1n and a ratio λ(0,1), let E=i=1n(λE+bi) be a homogeneous self-similar set. In this paper, we study the existence and maximal length of arithmetic progressions in E: Our main idea is from the multiple β-expansions.

Keywords Self-similar sets      arithmetic progression (AP)      β-expansions     
Corresponding Author(s): Lifeng XI   
Issue Date: 22 November 2019
 Cite this article:   
Lifeng XI,Kan JIANG,Qiyang PEI. Arithmetic progressions in self-similar sets[J]. Front. Math. China, 2019, 14(5): 957-966.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0788-2
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I5/957
1 S Akiyama, V Komornik. Discrete spectra and Pisot numbers. J Number Theory, 2013, 133(2): 375–390
https://doi.org/10.1016/j.jnt.2012.07.015
2 R Broderick, L Fishman, D Simmons. Quantitative results using variants of Schmidt's game: dimension bounds, arithmetic progressions, and more. Acta Arith, 2019, 188(3): 289–316
https://doi.org/10.4064/aa171127-8-11
3 J Chaika. Arithmetic progressions in middle-nth Cantor sets. arXiv: 1703.08998
4 K Dajani, M de Vries. Invariant densities for random β-expansions. J Eur Math Soc (JEMS), 2019, 9(1): 157–176
https://doi.org/10.4171/JEMS/76
5 K Dajani, K Jiang, D Kong, W Li. Multiple codings for self-similar sets with overlaps. arXiv: 1603.09304
6 K Dajani, K Jiang, D Kong, W Li. Multiple expansions of real numbers with digits set {0,1,q}. Math Z, 2019, 291(3-4): 1605–1619
https://doi.org/10.1007/s00209-018-2123-0
7 K Dajani, C Kraaikamp, N van der Wekken. Ergodicity of N-continued fraction expansions. J Number Theory, 2013, 133(9): 3183–3204
https://doi.org/10.1016/j.jnt.2013.02.017
8 M De Vries, V Komornik. Unique expansions of real numbers. Adv Math, 2009, 221(2): 390–427
https://doi.org/10.1016/j.aim.2008.12.008
9 P Erdös, P Turán. On some sequences of integers. J Lond Math Soc, 1936, 11(4): 261–264
https://doi.org/10.1112/jlms/s1-11.4.261
10 K Falconer. Fractal Geometry: Mathematical Foundations and Applications. Chichester: John Wiley & Sons, Ltd, 1990
https://doi.org/10.2307/2532125
11 J M Fraser, H Yu. Arithmetic patches, weak tangents, and dimension. Bull Lond Math Soc, 2018, 50(1): 85–95
https://doi.org/10.1112/blms.12112
12 H Furstenberg, Y Katznelson, D Ornstein. The ergodic theoretical proof of Szemerédi's theorem. Bull Amer Math Soc (N S), 1982, 7(3): 527–552
https://doi.org/10.1090/S0273-0979-1982-15052-2
13 P Glendinning, N Sidorov. Unique representations of real numbers in non-integer bases. Math Res Lett, 2001, 8(4): 535–543
https://doi.org/10.4310/MRL.2001.v8.n4.a12
14 B Green, T Tao. The primes contain arbitrarily long arithmetic progressions. Ann of Math (2), 2008, 167(2): 481–547
https://doi.org/10.4007/annals.2008.167.481
15 J E Hutchinson. Fractals and self-similarity. Indiana Univ Math J, 1981, 30(5): 713–747
https://doi.org/10.1512/iumj.1981.30.30055
16 V Komornik, D Kong, W Li. Hausdorff dimension of univoque sets and Devil's staircase. Adv Math, 2017, 305:165–196
https://doi.org/10.1016/j.aim.2016.03.047
17 I Laba, M Pramanik. Arithmetic progressions in sets of fractional dimension. Geom Funct Anal, 2009, 19(2): 429–456
https://doi.org/10.1007/s00039-009-0003-9
18 J Li, M Wu, Y Xiong. On Assouad dimension and arithmetic progressions in sets defined by digit restrictions. J Fourier Anal Appl, 2019, 25(4): 1782–1794
https://doi.org/10.1007/s00041-018-9641-3
19 K F Roth. On certain sets of integers. J Lond Math Soc, 1953, 28: 104–109
https://doi.org/10.1112/jlms/s1-28.1.104
20 P Shmerkin. Salem sets with no arithmetic progressions. Int Math Res Not IMRN, 2017, (7): 1929–1941
https://doi.org/10.1093/imrn/rnw097
21 N Sidorov. Expansions in non-integer bases: lower, middle and top orders. J Number Theory, 2009, 129(4): 741–754
https://doi.org/10.1016/j.jnt.2008.11.003
22 E Szemerédi. On sets of integers containing no four elements in arithmetic progression. Acta Math Hungar, 1969, 20: 89–104
https://doi.org/10.1007/BF01894569
23 E Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 199–245
https://doi.org/10.4064/aa-27-1-199-245
24 T Tao. What is good mathematics? Bull Amer Math Soc (N S), 2007, 44(4): 623–634
https://doi.org/10.1090/S0273-0979-07-01168-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed