Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (2) : 367-384    https://doi.org/10.1007/s11464-020-0830-4
RESEARCH ARTICLE
Tensor Bernstein concentration inequalities with an application to sample estimators for high-order moments
Ziyan LUO1, Liqun QI2,3(), Philippe L. TOINT4
1. Department of Applied Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, China
2. Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
3. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
4. Namur Center for Complex Systems (naXys), University of Namur, 61, rue de Bruxelles, B-5000 Namur, Belgium
 Download: PDF(310 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper develops the Bernstein tensor concentration inequality for random tensors of general order, based on the use of Einstein products for tensors. This establishes a strong link between these and matrices, which in turn allows exploitation of existing results for the latter. An interesting application to sample estimators of high-order moments is presented as an illustration.

Keywords Random tensors      concentration inequality      Einstein products      sub-sampling      computational statistics     
Corresponding Author(s): Liqun QI   
Issue Date: 18 May 2020
 Cite this article:   
Ziyan LUO,Liqun QI,Philippe L. TOINT. Tensor Bernstein concentration inequalities with an application to sample estimators for high-order moments[J]. Front. Math. China, 2020, 15(2): 367-384.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0830-4
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I2/367
1 D Aclioptas, F McSherry. Fast computation of low rank matrix approximations. In: Proc 33rd Ann ACM Symposium on Theory of Computing. 2001, 611–618
https://doi.org/10.1145/380752.380858
2 R Ahlswede, A Winter. Strong converse for identification via quantum channels. IEEE Trans Inform Theory, 2002, 48(3): 569–579
https://doi.org/10.1109/18.985947
3 S Bellavia, G Gurioli, B Morini. Theoretical study of an adaptive cubic regularization method with dynamic inexact Hessian information. arXiv: 1808.06239
4 S Bellavia, G Gurioli, B Morini, Ph L Toint. Deterministic and stochastic inexact regularization algorithms for nonconvex optimization with optimal complexity. arXiv: 1811.03831
5 S Bellavia, N Krejić, N Krklec Jerinkić. Subsampled inexact Newton methods for minimizing large sums of convex function. arXiv: 1811.05730
6 M Brazell, N Li, C Navasca, Ch Tamon. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570
https://doi.org/10.1137/100804577
7 D Cartwright, B Sturmfels. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438(2): 942–952
https://doi.org/10.1016/j.laa.2011.05.040
8 X Chen, B Jiang, T Lin, S Zhang. On adaptive cubic regularization Newton's methods for convex optimization via random sampling. arXiv: 1802.05426
9 D L Donoho. Compressed sensing. IEEE Trans Inform Theory, 2006, 52(4): 1289–1306
https://doi.org/10.1109/TIT.2006.871582
10 A Einstein. The foundation of the general theory of relativity. In: The Collected Papers of Albert Einstein, Vol 6. Princeton: Princeton Univ Press, 1997, 146–200
11 P J Forrester. Log-Gases and Random Matrices. London Math Soc Monogr Ser, 34. Princeton: Princeton Univ Press, 2010
https://doi.org/10.1515/9781400835416
12 A Frieze, R Kannan, S Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations. In: Proc 39th Ann Symposium on Foundations of Computer Science. 1998, 370–378
13 J M Kohler. A Lucchi. Sub-sample cubic regularization for non-convex optimization. In: Proc 34th International Conference on Machine Learning, Sydney, 2017. arXiv: 1705.05933v3
14 W M Lai, D H Rubin, E Krempl. Introduction to Continuum Mechanics. Oxford: Butterworth-Heinemann, 2009
https://doi.org/10.1016/B978-0-7506-8560-3.00001-3
15 Z Luo, L Qi, Y Ye. Linear operators and positive semidefiniteness of symmetric tensor spaces. Sci China Math, 2015, 58(1): 197–212
https://doi.org/10.1007/s11425-014-4930-z
16 Y Miao, L Qi, Y Wei. Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl, 2020, 590: 258–303
https://doi.org/10.1016/j.laa.2019.12.035
17 L Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40(6): 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
18 L Qi, Z Luo. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
https://doi.org/10.1137/1.9781611974751
19 L Qi, G Yu, E X Wu. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3(3): 416–433
https://doi.org/10.1137/090755138
20 L Sun, B Zheng, C Bu, Y Wei. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698
https://doi.org/10.1080/03081087.2015.1083933
21 W Thomson. Elements of a mathematical theory of elasticity. Proc Roy Soc Lond, 1856, 8: 85–87
https://doi.org/10.1098/rspl.1856.0030
22 J Tropp. An Introduction to Matrix Concentration Inequalities. Found Trends Machine Learning, Number 8: 1-2. Boston: Now Publ, 2015
https://doi.org/10.1561/9781601988393
23 C K I Williams, N Seeger. Using the Nystrom method to speed up kernel machines. In: Advances in Neural Information Processing Systems 13. 2001, 682–688
24 J Wishart. The generalized product moment distribution in samples from a multivariate normal population. Biometrika, 1928, 20A(1-2): 32–52
https://doi.org/10.1093/biomet/20A.1-2.32
25 P Xu, F Roosta-Khorasani, M W Mahoney. Newton-type methods for non-convex optimization under inexact Hessian information. arXiv: 1708.07164v3
26 P Xu, F Roosta-Khorasani, M W Mahoney. Second-order optimization for non-convex machine learning: an empirical study. arXiv: 1708.07827v2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed