|
|
Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors |
Hongmei YAO( ), Li MA, Chunmeng LIU, Changjiang BU |
School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China |
|
|
Abstract We give a Brualdi-type Z-eigenvalue inclusion set of tensors, and prove that it is tighter than the inclusion set given by G. Wang, G. L. Zhou, and L. Caccetta [Discrete Contin. Dyn. Syst. Ser. B, 2017, 22: 187–198] in a special case. We also give an inclusion set for lk,s-singular values of rectangular tensors.
|
Keywords
Z-Eigenvalues
digraph
lk
s-singular values
rectangular tensors
|
Corresponding Author(s):
Hongmei YAO
|
Issue Date: 21 July 2020
|
|
1 |
L Bloy, R Verma. On computing the underlying fiber directions from the diffusion orientation distribution function. Medical Image Computing and Computer-Assisted Intervention, 2008, 5241: 1–8
https://doi.org/10.1007/978-3-540-85988-8_1
|
2 |
R A Brualdi. Matrices, eigenvalues, and directed graphs. Linear Multilinear Algebra, 1982, 11: 143–165
https://doi.org/10.1080/03081088208817439
|
3 |
C J Bu, Y P Wei, L Z Sun, J Zhou. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175
https://doi.org/10.1016/j.laa.2015.04.034
|
4 |
K C Chang, K Pearson, T Zhang. Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl, 2013, 438: 4166–4182
https://doi.org/10.1016/j.laa.2013.02.013
|
5 |
D Dahl, J M Leinaas, J Myrheim, E Ovrum. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725
https://doi.org/10.1016/j.laa.2006.08.026
|
6 |
A Einstein, B Podolsky, N Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 48: 696–702
https://doi.org/10.1103/PhysRev.48.696
|
7 |
J K Knowles, E Sternberg. On the ellipticity of the equations of nonlinear elastostatics for a special material. J Elasticity, 1975, 5: 341–361
https://doi.org/10.1007/BF00126996
|
8 |
J K Knowles, E Sternberg. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal. 1976, 63: 321–336
https://doi.org/10.1007/BF00279991
|
9 |
T Kolda, J Mayo. Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl, 2011, 32: 1095–1124
https://doi.org/10.1137/100801482
|
10 |
C Q Li, Q L Liu, Y M Wei. Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors. Comput Appl Math, 2019, 38: 183
https://doi.org/10.1007/s40314-019-0958-6
|
11 |
L H Lim. Singular values and eigenvalues of tensors: a variational approach. IEEE International Workshop on Comput Advances in Multi-Sensor Adaptive Processing, 2005, 129–132
|
12 |
M Ng, L Q Qi, G Zhou. Finding the largest eigenvalue of a nonnegative tensor . SIAM J Matrix Anal Appl, 2009, 31: 1090–1099
https://doi.org/10.1137/09074838X
|
13 |
Q Ni, L Q Qi, F Wang. An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans Automat Control, 2008, 53: 1096–1107
https://doi.org/10.1109/TAC.2008.923679
|
14 |
L Q Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
|
15 |
L Q Qi, G Yu, E X Wu. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433
https://doi.org/10.1137/090755138
|
16 |
P Rosakis. Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37
https://doi.org/10.1007/BF00377977
|
17 |
E Schrödinger. Die gegenwaätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812
https://doi.org/10.1007/BF01491891
|
18 |
G Wang, G L Zhou, L Caccetta. Z-Eigenvalue inclusion theorems for tensors. Discrete Contin Dyn Syst Ser B, 2017, 22: 187–198
https://doi.org/10.3934/dcdsb.2017009
|
19 |
Y Wang, M Aron. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96
https://doi.org/10.1007/BF00042193
|
20 |
H M Yao, B S Long, C J Bu, J Zhou.lk,s-Singular values and spectral radius of partially symmetric rectangular tensors . Front Math China, 2016, 11: 605–622
https://doi.org/10.1007/s11464-015-0494-7
|
21 |
H M Yao, C Zhang, L Liu, J Zhou, C J Bu. Singular value inclusion sets of rectangular tensors. Linear Algebra Appl, 2019, 576: 181–199
https://doi.org/10.1016/j.laa.2018.05.011
|
22 |
J X Zhao, C Q Li. Singular value inclusion sets for rectangular tensors. Linear Multilinear Algebra, 2018, 66: 1333–1350
https://doi.org/10.1080/03081087.2017.1351518
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|