Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (3) : 601-612    https://doi.org/10.1007/s11464-020-0837-x
RESEARCH ARTICLE
Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors
Hongmei YAO(), Li MA, Chunmeng LIU, Changjiang BU
School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
 Download: PDF(371 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We give a Brualdi-type Z-eigenvalue inclusion set of tensors, and prove that it is tighter than the inclusion set given by G. Wang, G. L. Zhou, and L. Caccetta [Discrete Contin. Dyn. Syst. Ser. B, 2017, 22: 187–198] in a special case. We also give an inclusion set for lk,s-singular values of rectangular tensors.

Keywords Z-Eigenvalues      digraph      lk      s-singular values      rectangular tensors     
Corresponding Author(s): Hongmei YAO   
Issue Date: 21 July 2020
 Cite this article:   
Hongmei YAO,Li MA,Chunmeng LIU, et al. Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Front. Math. China, 2020, 15(3): 601-612.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0837-x
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I3/601
1 L Bloy, R Verma. On computing the underlying fiber directions from the diffusion orientation distribution function. Medical Image Computing and Computer-Assisted Intervention, 2008, 5241: 1–8
https://doi.org/10.1007/978-3-540-85988-8_1
2 R A Brualdi. Matrices, eigenvalues, and directed graphs. Linear Multilinear Algebra, 1982, 11: 143–165
https://doi.org/10.1080/03081088208817439
3 C J Bu, Y P Wei, L Z Sun, J Zhou. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175
https://doi.org/10.1016/j.laa.2015.04.034
4 K C Chang, K Pearson, T Zhang. Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl, 2013, 438: 4166–4182
https://doi.org/10.1016/j.laa.2013.02.013
5 D Dahl, J M Leinaas, J Myrheim, E Ovrum. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711–725
https://doi.org/10.1016/j.laa.2006.08.026
6 A Einstein, B Podolsky, N Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 48: 696–702
https://doi.org/10.1103/PhysRev.48.696
7 J K Knowles, E Sternberg. On the ellipticity of the equations of nonlinear elastostatics for a special material. J Elasticity, 1975, 5: 341–361
https://doi.org/10.1007/BF00126996
8 J K Knowles, E Sternberg. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal. 1976, 63: 321–336
https://doi.org/10.1007/BF00279991
9 T Kolda, J Mayo. Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl, 2011, 32: 1095–1124
https://doi.org/10.1137/100801482
10 C Q Li, Q L Liu, Y M Wei. Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors. Comput Appl Math, 2019, 38: 183
https://doi.org/10.1007/s40314-019-0958-6
11 L H Lim. Singular values and eigenvalues of tensors: a variational approach. IEEE International Workshop on Comput Advances in Multi-Sensor Adaptive Processing, 2005, 129–132
12 M Ng, L Q Qi, G Zhou. Finding the largest eigenvalue of a nonnegative tensor . SIAM J Matrix Anal Appl, 2009, 31: 1090–1099
https://doi.org/10.1137/09074838X
13 Q Ni, L Q Qi, F Wang. An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans Automat Control, 2008, 53: 1096–1107
https://doi.org/10.1109/TAC.2008.923679
14 L Q Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
15 L Q Qi, G Yu, E X Wu. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433
https://doi.org/10.1137/090755138
16 P Rosakis. Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37
https://doi.org/10.1007/BF00377977
17 E Schrödinger. Die gegenwaätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807–812
https://doi.org/10.1007/BF01491891
18 G Wang, G L Zhou, L Caccetta. Z-Eigenvalue inclusion theorems for tensors. Discrete Contin Dyn Syst Ser B, 2017, 22: 187–198
https://doi.org/10.3934/dcdsb.2017009
19 Y Wang, M Aron. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96
https://doi.org/10.1007/BF00042193
20 H M Yao, B S Long, C J Bu, J Zhou.lk,s-Singular values and spectral radius of partially symmetric rectangular tensors . Front Math China, 2016, 11: 605–622
https://doi.org/10.1007/s11464-015-0494-7
21 H M Yao, C Zhang, L Liu, J Zhou, C J Bu. Singular value inclusion sets of rectangular tensors. Linear Algebra Appl, 2019, 576: 181–199
https://doi.org/10.1016/j.laa.2018.05.011
22 J X Zhao, C Q Li. Singular value inclusion sets for rectangular tensors. Linear Multilinear Algebra, 2018, 66: 1333–1350
https://doi.org/10.1080/03081087.2017.1351518
[1] Yanxia DONG,Erfang SHAN,Xiao MIN. Distance domination of generalized de Bruijn and Kautz digraphs[J]. Front. Math. China, 2017, 12(2): 339-357.
[2] Guizhen LIU. Orthogonal factorizations of digraphs[J]. Front Math Chin, 2009, 4(2): 311-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed