|
|
Existence of invariant curves for area-preserving mappings under weaker non-degeneracy conditions |
Kun WANG, Junxiang XU( ) |
School of Mathematics, Southeast University, Nanjing 211189, China |
|
|
Abstract We consider a class of analytic area-preserving mappings Cm-smoothly depending on a parameter. Without imposing on any non-degeneracy assumption, we prove a formal KAM theorem for the mappings, which implies many previous KAM-type results under some non-degeneracy conditions. Moreover, by this formal KAM theorem, we can also obtain some new interesting results under some weaker non-degeneracy conditions. Thus, the formal KAM theorem can be regarded as a general KAM theorem for areapreserving mappings.
|
Keywords
Area-preserving mapping
invariant curve
KAM iteration
nondegeneracy condition
|
Corresponding Author(s):
Junxiang XU
|
Issue Date: 21 July 2020
|
|
1 |
S Aubry, G Abramovici. Chaotic trajectories in the standard map. The concept of anti-integrability. Phys D, 1990, 43(2{3): 199–219
https://doi.org/10.1016/0167-2789(90)90133-A
|
2 |
Q Y Bi, J X Xu. Persistence of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings. Qual Theory Dyn Syst, 2014, 13(2): 269–288
https://doi.org/10.1007/s12346-014-0117-9
|
3 |
C Q Cheng, Y S Sun. Existence of invariant tori in three-dimensional measure preserving mappings. Celestial Mech Dynam Astronom, 1990, 47(3): 275–292
https://doi.org/10.1007/BF00053456
|
4 |
P Duarte. Plenty of elliptic islands for the standard family of area preserving maps. Ann Inst H Poincaré Anal Non Linéaire, 1994, 11(4): 359–409
https://doi.org/10.1016/S0294-1449(16)30180-9
|
5 |
H R Dullin, J D Meiss. Resonances and twist in volume preserving mappings. SIAM J Appl Dyn Syst, 2012, 11(1): 319–349
https://doi.org/10.1137/110846865
|
6 |
A M Fox, J D Meiss. Greene's residue criterion for the breakup of invariant tori of volume-preserving maps. Phys D, 2013, 243: 45–63
https://doi.org/10.1016/j.physd.2012.09.005
|
7 |
V, Gelfreich C Simó, A Vieiro. Dynamics of 4D symplectic maps near a double resonance. Phys D, 2013, 243: 92–110
https://doi.org/10.1016/j.physd.2012.10.001
|
8 |
M Herman. Topological stability of the Hamiltonian and volume-preserving dynamical systems. Lecture at the International Conference on Dynamical Systems, Evanston, Illinois, March, 1991
|
9 |
R D L Llave, J D M James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete Contin Dyn Syst, 2012, 32(12): 4321–4360
https://doi.org/10.3934/dcds.2012.32.4321
|
10 |
X Z Lu, J Li, J X Xu. A KAM theorem for a class of nearly integrable symplectic mappings. J Dynam Differential Equations, 2017, 29(1): 131–154
https://doi.org/10.1007/s10884-015-9427-0
|
11 |
J Moser. On invariant curves of area preserving mappings of an annulus. Nachr Akad Wiss Göttingen II Math Phys Kl, 1962, 1962: 1–20
|
12 |
J Moser. A rapidly convergent iteration method and nonlinear differential equations. Ann Sc Norm Super Pisa Cl Sci (5), 1966, 20: 499–535
|
13 |
J Moser. Convergent series expansions for quasi-periodic motions. Math Ann, 1967, 169: 136–176
https://doi.org/10.1007/BF01399536
|
14 |
J Moser. Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics. Ann of Math Stud, No 77. Princeton: Princeton Univ Press, 1973
|
15 |
H Rüssmann. Kleine Nenner. I. Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr Akad Wiss Göttingen II Math Phys Kl, 1970, 1970: 67–105
|
16 |
H Rüssmann. On a new proof of Moser's twist mapping theorem. Celestial Mech Dynam Astronom, 1976, 14: 19–31
https://doi.org/10.1007/BF01247128
|
17 |
H Rüssmann. On the existence of invariant curves of twist mappings of an annulus. In: Palis Jr J, ed. Geometric Dynamics. Lecture Notes in Math, Vol 1007. Berlin: Springer, 1983, 677–718
https://doi.org/10.1007/BFb0061441
|
18 |
H Rüssmann. Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition. Ergodic Theory Dynam Systems, 2002, 22(5): 1551–1573
https://doi.org/10.1017/S0143385702000974
|
19 |
Z J Shang. A note on the KAM theorem for symplectic mappings. J Dynam Differential Equations, 2000, 12(2): 357–383
https://doi.org/10.1023/A:1009068425415
|
20 |
C L Siegel, J K Moser. Lectures on Celestial Mechanics. Grundlehren Math Wiss, Vol 187. Berlin: Springer-Verlag, 1971
https://doi.org/10.1007/978-3-642-87284-6
|
21 |
Z H Xia. Existence of invariant tori in volume-preserving diffeomorphisms. Ergodic Theory Dynam Systems, 1992, 12(3): 621–631
https://doi.org/10.1017/S0143385700006969
|
22 |
J X Xu, X Z Lu. General KAM theorems and their applications to invariant tori with prescribed frequencies. Regul Chaotic Dyn, 2016, 21(1): 107–125
https://doi.org/10.1134/S1560354716010068
|
23 |
J X Xu, K Wang, M Zhu. On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters . Proc Amer Math Soc, 2016, 144(11): 4793–4805
https://doi.org/10.1090/proc/13088
|
24 |
J X Xu, J G You. Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc Amer Math Soc, 2010, 138(7): 2385–2395
https://doi.org/10.1090/S0002-9939-10-10151-8
|
25 |
W Z Zhu, B F Liu, Z X Liu. The hyperbolic invariant tori of symplectic mappings. Nonlinear Anal, 2008, 68(1): 109–126
https://doi.org/10.1016/j.na.2006.10.035
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|