Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (3) : 571-591    https://doi.org/10.1007/s11464-020-0838-9
RESEARCH ARTICLE
Existence of invariant curves for area-preserving mappings under weaker non-degeneracy conditions
Kun WANG, Junxiang XU()
School of Mathematics, Southeast University, Nanjing 211189, China
 Download: PDF(300 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider a class of analytic area-preserving mappings Cm-smoothly depending on a parameter. Without imposing on any non-degeneracy assumption, we prove a formal KAM theorem for the mappings, which implies many previous KAM-type results under some non-degeneracy conditions. Moreover, by this formal KAM theorem, we can also obtain some new interesting results under some weaker non-degeneracy conditions. Thus, the formal KAM theorem can be regarded as a general KAM theorem for areapreserving mappings.

Keywords Area-preserving mapping      invariant curve      KAM iteration      nondegeneracy condition     
Corresponding Author(s): Junxiang XU   
Issue Date: 21 July 2020
 Cite this article:   
Kun WANG,Junxiang XU. Existence of invariant curves for area-preserving mappings under weaker non-degeneracy conditions[J]. Front. Math. China, 2020, 15(3): 571-591.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0838-9
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I3/571
1 S Aubry, G Abramovici. Chaotic trajectories in the standard map. The concept of anti-integrability. Phys D, 1990, 43(2{3): 199–219
https://doi.org/10.1016/0167-2789(90)90133-A
2 Q Y Bi, J X Xu. Persistence of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings. Qual Theory Dyn Syst, 2014, 13(2): 269–288
https://doi.org/10.1007/s12346-014-0117-9
3 C Q Cheng, Y S Sun. Existence of invariant tori in three-dimensional measure preserving mappings. Celestial Mech Dynam Astronom, 1990, 47(3): 275–292
https://doi.org/10.1007/BF00053456
4 P Duarte. Plenty of elliptic islands for the standard family of area preserving maps. Ann Inst H Poincaré Anal Non Linéaire, 1994, 11(4): 359–409
https://doi.org/10.1016/S0294-1449(16)30180-9
5 H R Dullin, J D Meiss. Resonances and twist in volume preserving mappings. SIAM J Appl Dyn Syst, 2012, 11(1): 319–349
https://doi.org/10.1137/110846865
6 A M Fox, J D Meiss. Greene's residue criterion for the breakup of invariant tori of volume-preserving maps. Phys D, 2013, 243: 45–63
https://doi.org/10.1016/j.physd.2012.09.005
7 V, Gelfreich C Simó, A Vieiro. Dynamics of 4D symplectic maps near a double resonance. Phys D, 2013, 243: 92–110
https://doi.org/10.1016/j.physd.2012.10.001
8 M Herman. Topological stability of the Hamiltonian and volume-preserving dynamical systems. Lecture at the International Conference on Dynamical Systems, Evanston, Illinois, March, 1991
9 R D L Llave, J D M James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete Contin Dyn Syst, 2012, 32(12): 4321–4360
https://doi.org/10.3934/dcds.2012.32.4321
10 X Z Lu, J Li, J X Xu. A KAM theorem for a class of nearly integrable symplectic mappings. J Dynam Differential Equations, 2017, 29(1): 131–154
https://doi.org/10.1007/s10884-015-9427-0
11 J Moser. On invariant curves of area preserving mappings of an annulus. Nachr Akad Wiss Göttingen II Math Phys Kl, 1962, 1962: 1–20
12 J Moser. A rapidly convergent iteration method and nonlinear differential equations. Ann Sc Norm Super Pisa Cl Sci (5), 1966, 20: 499–535
13 J Moser. Convergent series expansions for quasi-periodic motions. Math Ann, 1967, 169: 136–176
https://doi.org/10.1007/BF01399536
14 J Moser. Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics. Ann of Math Stud, No 77. Princeton: Princeton Univ Press, 1973
15 H Rüssmann. Kleine Nenner. I. Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr Akad Wiss Göttingen II Math Phys Kl, 1970, 1970: 67–105
16 H Rüssmann. On a new proof of Moser's twist mapping theorem. Celestial Mech Dynam Astronom, 1976, 14: 19–31
https://doi.org/10.1007/BF01247128
17 H Rüssmann. On the existence of invariant curves of twist mappings of an annulus. In: Palis Jr J, ed. Geometric Dynamics. Lecture Notes in Math, Vol 1007. Berlin: Springer, 1983, 677–718
https://doi.org/10.1007/BFb0061441
18 H Rüssmann. Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition. Ergodic Theory Dynam Systems, 2002, 22(5): 1551–1573
https://doi.org/10.1017/S0143385702000974
19 Z J Shang. A note on the KAM theorem for symplectic mappings. J Dynam Differential Equations, 2000, 12(2): 357–383
https://doi.org/10.1023/A:1009068425415
20 C L Siegel, J K Moser. Lectures on Celestial Mechanics. Grundlehren Math Wiss, Vol 187. Berlin: Springer-Verlag, 1971
https://doi.org/10.1007/978-3-642-87284-6
21 Z H Xia. Existence of invariant tori in volume-preserving diffeomorphisms. Ergodic Theory Dynam Systems, 1992, 12(3): 621–631
https://doi.org/10.1017/S0143385700006969
22 J X Xu, X Z Lu. General KAM theorems and their applications to invariant tori with prescribed frequencies. Regul Chaotic Dyn, 2016, 21(1): 107–125
https://doi.org/10.1134/S1560354716010068
23 J X Xu, K Wang, M Zhu. On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters . Proc Amer Math Soc, 2016, 144(11): 4793–4805
https://doi.org/10.1090/proc/13088
24 J X Xu, J G You. Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc Amer Math Soc, 2010, 138(7): 2385–2395
https://doi.org/10.1090/S0002-9939-10-10151-8
25 W Z Zhu, B F Liu, Z X Liu. The hyperbolic invariant tori of symplectic mappings. Nonlinear Anal, 2008, 68(1): 109–126
https://doi.org/10.1016/j.na.2006.10.035
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed