Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (3) : 613-616    https://doi.org/10.1007/s11464-020-0841-1
RESEARCH ARTICLE
On B6- and B7-groups
Tianyi ZHONG1,2, Yilan TAN1()
1. Faculty of Science, Jiangsu University, Zhenjiang 212013, China
2. School of Mathematics, South China University of Technology, Guangzhou 510641, China
 Download: PDF(223 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A finite group G is said to be a Bn-group if any n-element subset A = {a1, a2,..., an} of G satisfies |A2|=|{aiaj|1i,jn}|n(n+1)/2. In this paper, the characterizations of the B6- and B7-groups are given.

Keywords Bn-groups, B(n      k) groups, small squaring property, nonabelian groups     
Corresponding Author(s): Yilan TAN   
Issue Date: 21 July 2020
 Cite this article:   
Tianyi ZHONG,Yilan TAN. On B6- and B7-groups[J]. Front. Math. China, 2020, 15(3): 613-616.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0841-1
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I3/613
1 Y G Berkovich, G A Freiman, C E Praeger. Small squaring and cubing properties for finite groups. Bull Aust Math Soc, 1991, 44: 429–450
https://doi.org/10.1017/S0004972700029932
2 L Brailovsky. A characterization of abelian groups. Proc Amer Math Soc, 1993, 117(3): 627–629
https://doi.org/10.1090/S0002-9939-1993-1129873-0
3 T Eddy, M M Parmenter. Groups with restricted squaring properties. Ars Combin, 2012, 104: 321–331
4 G A Freiman. On two- and three-element subsets of groups. Aequationes Math, 1981, 22: 140–152
https://doi.org/10.1007/BF02190175
5 H Huang, Y Li. On B(4,14) non-2-groups. J Algebra Appl, 2015, 14(8): 1550118 (14pp)
https://doi.org/10.1142/S0219498815501182
6 H Huang, Y Li. On B(5,18) groups. Comm Algebra, 2016, 44(2): 568–590
https://doi.org/10.1080/00927872.2014.981751
7 Y Li, X Pan. On B(5,k)-groups. Bull Aust Math Soc, 2011, 84: 393–407
https://doi.org/10.1017/S0004972711002474
8 Y Li, Y Tan. On B(4,k) groups. J Algebra Appl, 2010, 9: 27–42
https://doi.org/10.1142/S0219498810003896
9 Y Li, Y Tan. On B(4,13) 2-groups. Comm Algebra, 2011, 39: 3769–3780
https://doi.org/10.1080/00927872.2010.512584
10 Y Li, Y Tan. On B5-groups. Ars Combin, 2014, 114: 3–14
11 P Longobardi, M Maj. The classification of groups with the small squaring property on 3-sets. Bull Aust Math Soc, 1992, 46: 263–269
https://doi.org/10.1017/S0004972700011886
12 M M Parmenter. On groups with redundancy in multiplication, Ars Combin, 2002, 63: 119–127
13 Y Tan, T Zhong. On B(5,19) non-2-groups. Comm Algebra, 2020, 48: 663–667
https://doi.org/10.1080/00927872.2019.1654494
14 The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.10.0. 2018
15 H Wang, Y Tan, T Moss. On B(n,k) 2-groups. Comm Algebra, 2015, 43: 4655–4659
https://doi.org/10.1080/00927872.2014.930476
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed