|
|
On B6- and B7-groups |
Tianyi ZHONG1,2, Yilan TAN1( ) |
1. Faculty of Science, Jiangsu University, Zhenjiang 212013, China 2. School of Mathematics, South China University of Technology, Guangzhou 510641, China |
|
|
Abstract A finite group G is said to be a Bn-group if any n-element subset A = {a1, a2,..., an} of G satisfies . In this paper, the characterizations of the B6- and B7-groups are given.
|
Keywords
Bn-groups, B(n
k) groups, small squaring property, nonabelian groups
|
Corresponding Author(s):
Yilan TAN
|
Issue Date: 21 July 2020
|
|
1 |
Y G Berkovich, G A Freiman, C E Praeger. Small squaring and cubing properties for finite groups. Bull Aust Math Soc, 1991, 44: 429–450
https://doi.org/10.1017/S0004972700029932
|
2 |
L Brailovsky. A characterization of abelian groups. Proc Amer Math Soc, 1993, 117(3): 627–629
https://doi.org/10.1090/S0002-9939-1993-1129873-0
|
3 |
T Eddy, M M Parmenter. Groups with restricted squaring properties. Ars Combin, 2012, 104: 321–331
|
4 |
G A Freiman. On two- and three-element subsets of groups. Aequationes Math, 1981, 22: 140–152
https://doi.org/10.1007/BF02190175
|
5 |
H Huang, Y Li. On B(4,14) non-2-groups. J Algebra Appl, 2015, 14(8): 1550118 (14pp)
https://doi.org/10.1142/S0219498815501182
|
6 |
H Huang, Y Li. On B(5,18) groups. Comm Algebra, 2016, 44(2): 568–590
https://doi.org/10.1080/00927872.2014.981751
|
7 |
Y Li, X Pan. On B(5,k)-groups. Bull Aust Math Soc, 2011, 84: 393–407
https://doi.org/10.1017/S0004972711002474
|
8 |
Y Li, Y Tan. On B(4,k) groups. J Algebra Appl, 2010, 9: 27–42
https://doi.org/10.1142/S0219498810003896
|
9 |
Y Li, Y Tan. On B(4,13) 2-groups. Comm Algebra, 2011, 39: 3769–3780
https://doi.org/10.1080/00927872.2010.512584
|
10 |
Y Li, Y Tan. On B5-groups. Ars Combin, 2014, 114: 3–14
|
11 |
P Longobardi, M Maj. The classification of groups with the small squaring property on 3-sets. Bull Aust Math Soc, 1992, 46: 263–269
https://doi.org/10.1017/S0004972700011886
|
12 |
M M Parmenter. On groups with redundancy in multiplication, Ars Combin, 2002, 63: 119–127
|
13 |
Y Tan, T Zhong. On B(5,19) non-2-groups. Comm Algebra, 2020, 48: 663–667
https://doi.org/10.1080/00927872.2019.1654494
|
14 |
The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.10.0. 2018
|
15 |
H Wang, Y Tan, T Moss. On B(n,k) 2-groups. Comm Algebra, 2015, 43: 4655–4659
https://doi.org/10.1080/00927872.2014.930476
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|