|
|
Finite dimensional modules over quantum toroidal algebras |
Limeng XIA( ) |
Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract For all generic , when g is not of type A1; we prove that the quantum toroidal algebra Uq(gtor) has no nontrivial finite dimensional simple module.
|
Keywords
Quantum toroidal algebra
finite dimensional module
|
Corresponding Author(s):
Limeng XIA
|
Issue Date: 21 July 2020
|
|
1 |
J Beck. Convex bases of PBW type for quantum affine algebras. Comm Math Phys, 1994, 165: 193–199
https://doi.org/10.1007/BF02099742
|
2 |
R E Block. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69–110
https://doi.org/10.1016/0001-8708(81)90058-X
|
3 |
V Chari, A Pressley. Quantum affine algebras. Comm Math Phys, 1991, 142: 261–283
https://doi.org/10.1007/BF02102063
|
4 |
V Chari, A Pressley. Minimal affinizations of representations of quantum groups: The nonsimply-laced case. Lett Math Phys, 1995, 35: 99–114
https://doi.org/10.1007/BF00750760
|
5 |
V Chari, A Pressley. Minimal affinizations of representations of quantum groups: The simply-laced case. J Algebra, 1996, 184: 1–30
https://doi.org/10.1006/jabr.1996.0247
|
6 |
V Drinfeld. A new realization of Yangians and quantized affine algebras. Soviet Math Dokl, 1988, 36: 212–216
|
7 |
I Frenkel, N Jing, W Wang. Quantum vertex representations via finite groups and the McKay correspondence . Comm Math Phys,2000, 211: 365–393
https://doi.org/10.1007/s002200050817
|
8 |
V Ginzburg, M Kapranov, E Vasserot. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147–160
https://doi.org/10.4310/MRL.1995.v2.n2.a4
|
9 |
D Hernandez. Quantum toroidal algebras and their representations. Selecta Math (N S), 2009, 14: 701–725
https://doi.org/10.1007/s00029-009-0502-4
|
10 |
J C Jantzen. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
|
11 |
K Miki. Toroidal and level 0 U0 q(b sln+1) actions on Uq(b gln+1)-modules. J Math Phys, 1999, 40: 3191–3210
https://doi.org/10.1063/1.533078
|
12 |
K Miki. Representations of quantum toroidal algebra Uq(sln+1,tor)(n>2). J Math Phys, 2000, 41: 7079–7098
https://doi.org/10.1063/1.1287436
|
13 |
K Miki. Quantum toroidal algebra Uq(sl2,tor) and R matrices. J Math Phys, 2001, 42: 2293–2308
https://doi.org/10.1063/1.1357198
|
14 |
Y Saito. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155–177
https://doi.org/10.2977/prims/1195144759
|
15 |
M Varagnolo, E Vasserot. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469–484
https://doi.org/10.1007/BF02517898
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|