Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (3) : 593-600    https://doi.org/10.1007/s11464-020-0846-9
RESEARCH ARTICLE
Finite dimensional modules over quantum toroidal algebras
Limeng XIA()
Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China
 Download: PDF(277 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For all generic qC*, when g is not of type A1; we prove that the quantum toroidal algebra Uq(gtor) has no nontrivial finite dimensional simple module.

Keywords Quantum toroidal algebra      finite dimensional module     
Corresponding Author(s): Limeng XIA   
Issue Date: 21 July 2020
 Cite this article:   
Limeng XIA. Finite dimensional modules over quantum toroidal algebras[J]. Front. Math. China, 2020, 15(3): 593-600.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0846-9
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I3/593
1 J Beck. Convex bases of PBW type for quantum affine algebras. Comm Math Phys, 1994, 165: 193–199
https://doi.org/10.1007/BF02099742
2 R E Block. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69–110
https://doi.org/10.1016/0001-8708(81)90058-X
3 V Chari, A Pressley. Quantum affine algebras. Comm Math Phys, 1991, 142: 261–283
https://doi.org/10.1007/BF02102063
4 V Chari, A Pressley. Minimal affinizations of representations of quantum groups: The nonsimply-laced case. Lett Math Phys, 1995, 35: 99–114
https://doi.org/10.1007/BF00750760
5 V Chari, A Pressley. Minimal affinizations of representations of quantum groups: The simply-laced case. J Algebra, 1996, 184: 1–30
https://doi.org/10.1006/jabr.1996.0247
6 V Drinfeld. A new realization of Yangians and quantized affine algebras. Soviet Math Dokl, 1988, 36: 212–216
7 I Frenkel, N Jing, W Wang. Quantum vertex representations via finite groups and the McKay correspondence . Comm Math Phys,2000, 211: 365–393
https://doi.org/10.1007/s002200050817
8 V Ginzburg, M Kapranov, E Vasserot. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147–160
https://doi.org/10.4310/MRL.1995.v2.n2.a4
9 D Hernandez. Quantum toroidal algebras and their representations. Selecta Math (N S), 2009, 14: 701–725
https://doi.org/10.1007/s00029-009-0502-4
10 J C Jantzen. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
11 K Miki. Toroidal and level 0 U0 q(b sln+1) actions on Uq(b gln+1)-modules. J Math Phys, 1999, 40: 3191–3210
https://doi.org/10.1063/1.533078
12 K Miki. Representations of quantum toroidal algebra Uq(sln+1,tor)(n>2). J Math Phys, 2000, 41: 7079–7098
https://doi.org/10.1063/1.1287436
13 K Miki. Quantum toroidal algebra Uq(sl2,tor) and R matrices. J Math Phys, 2001, 42: 2293–2308
https://doi.org/10.1063/1.1357198
14 Y Saito. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155–177
https://doi.org/10.2977/prims/1195144759
15 M Varagnolo, E Vasserot. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469–484
https://doi.org/10.1007/BF02517898
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed