Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (5) : 923-957    https://doi.org/10.1007/s11464-020-0857-6
RESEARCH ARTICLE
Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case
Ze LI()
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
 Download: PDF(442 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove the asymptotic stability of solitary waves to 1D nonlinear Schrödinger equations in the subcritical case with symmetry and spectrum assumptions. One of the main ideas is to use the vector fields method developed by S. Cuccagna, V. Georgiev, and N. Visciglia [Comm. Pure Appl. Math., 2013, 6: 957–980] to overcome the weak decay with respect to t of the linearized equation caused by the one dimension setting and the weak nonlinearity caused by the subcritical growth of the nonlinearity term. Meanwhile, we apply the polynomial growth of the high Sobolev norms of solutions to 1D Schrödinger equations obtained by G. Staffilani [Duke Math. J., 1997, 86(1): 109–142] to control the high moments of the solutions emerging from the vector fields method.

Keywords Nonlinear Schrödinger equation (NLS)      solitons      weak nonlinearity      asymptotic stability     
Corresponding Author(s): Ze LI   
Issue Date: 19 November 2020
 Cite this article:   
Ze LI. Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case[J]. Front. Math. China, 2020, 15(5): 923-957.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0857-6
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I5/923
1 M Beceanu. A centre-stable manifold for the focussing cubic NLS in ℝ1+3: Comm Math Phys, 2008, 280: 145–205
https://doi.org/10.1007/s00220-008-0427-3
2 M Beceanu. New estimates for a time-dependent Schrödinger equation. Duke Math J, 2011, 159: 417–477
https://doi.org/10.1215/00127094-1433394
3 M Beceanu. A critical center-stable manifold for Schrödinger's equation in three dimensions. Comm Pure Appl Math, 2012, 65: 431–507
https://doi.org/10.1002/cpa.21387
4 H Berestycki, P L Lions. Nonlinear scalar field equations. I. Existence of a ground state. Arch Ration Mech Anal, 1983, 62: 313–345
https://doi.org/10.1007/BF00250555
5 J Bourgain. On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Int Math Res Not IMRN, 1996: 277–304
6 J. BourgainGlobal Solutions of Nonlinear Schrödinger Equations. Amer Math Soc Colloq Publ, Vol 46. Providence: Amer Math Soc, 1999
https://doi.org/10.1090/coll/046
7 V Buslaev, G S Perelman. Scattering for the nonlinear Schrödinger equations: states close to a soliton. St Petersburgh Math J, 1993, 4(6): 1111–1142
8 V, Buslaev G S Perelman. On the stability of solitary waves for nonlinear Schrödinger equation. Amer Math Soc Transl Ser 2, 1995, 2(164): 75–99
https://doi.org/10.1090/trans2/164/04
9 V, Buslaev C Sulem. On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann Inst H Poincaré Anal Non Lineairé, 2003, 20(3): 419–475
https://doi.org/10.1016/S0294-1449(02)00018-5
10 T Cazenave. Semilinear Schrödinger Equations. Courant Lect Notes Math, Vol 10. Providence: Amer Math Soc, 2003
https://doi.org/10.1090/cln/010
11 O Costin, M Huang, W Schlag. On the spectral properties of L± in three dimensions. Nonlinearity, 2012, 25: 125–164
https://doi.org/10.1088/0951-7715/25/1/125
12 S Cuccagna. Stabilization of solutions to nonlinear Schrödinger equations. Comm Pure Appl Math, 2001, 4(9): 1110–1145
https://doi.org/10.1002/cpa.1018
13 S Cuccagna. An invariant set in energy space for supercritical NLS in 1D. J Math Anal Appl, 2009, 352: 634–644
https://doi.org/10.1016/j.jmaa.2008.11.023
14 S. Cuccagna The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states. Comm Math Phys, 2011, 305(2): 279–320
https://doi.org/10.1007/s00220-011-1265-2
15 S Cuccagna, V Georgiev, N Visciglia. Decay and scattering of small solutions of pure power NLS in ℝ with p>3 and with a potential. Comm Pure Appl Math, 2013, 6: 957–980
https://doi.org/10.1002/cpa.21465
16 S Cuccagna, M Maeda. On small energy stabilization in the NLS with a trapping potential. Anal PDE, 2015, 8(6): 1289–1349
https://doi.org/10.2140/apde.2015.8.1289
17 S Cuccagna, T Mizumachi. On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations. Comm Math Phys, 2008, 284: 51–77
https://doi.org/10.1007/s00220-008-0605-3
18 M Grillakis, J Shatah, W Strauss. Stability theory of solitary waves in the presence of symmetry I. J Funct Anal, 1987, 74(1): 160–197
https://doi.org/10.1016/0022-1236(87)90044-9
19 M Grillakis, J, Shatah W Strauss. Stability of solitary waves in presence of symmetry II. J Funct Anal, 1990, 94(2): 308–384
https://doi.org/10.1016/0022-1236(90)90016-E
20 S Gustafson, K Nakanishi, T P. TsaiAsymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves. Int Math Res Not IMRN, 2004, 66: 3559–3584
https://doi.org/10.1155/S1073792804132340
21 C E Kenig, G, Ponce L Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm Pure Appl Math, 1993, 46: 527–620
https://doi.org/10.1002/cpa.3160460405
22 E Kirr, O Mizrak. Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases. J Funct Anal, 2009, 257: 3691–3747
https://doi.org/10.1016/j.jfa.2009.08.010
23 E, Kirr A Zarnescu. On the asymptotic stability of bound states in 2D cubic Schrödinger equation. Comm Math Phys, 2007, 272: 443–468
https://doi.org/10.1007/s00220-007-0233-3
24 S Klainerman. Global existence for nonlinear wave equations. Comm Pure Appl Math, 1980, 33(1): 43–101
https://doi.org/10.1002/cpa.3160330104
25 S Klainerman. Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm Pure Appl Math, 1985, 38(3): 321–332
https://doi.org/10.1002/cpa.3160380305
26 J Krieger, W Schlag. Stable manifolds for all monic supercritical focusing nonlinear Schrodinger equations in one dimension. J Amer Math Soc, 2006, 19: 815–920
https://doi.org/10.1090/S0894-0347-06-00524-8
27 J, Krieger W Schlag. Non-generic blow-up solutions for the critical focusing NLS in 1-D. J Eur Math Soc (JEMS), 2009, 11(1): 1–125
https://doi.org/10.4171/JEMS/143
28 M Maeda. Stability of bound states of Hamiltonian PDEs in the degenerate cases. J Funct Anal, 2012, 263(2): 511–528
https://doi.org/10.1016/j.jfa.2012.04.006
29 Y Martel, F Merle, T P Tsai. Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations. Duke Math J, 2006, 133(3): 405–466
https://doi.org/10.1215/S0012-7094-06-13331-8
30 H P McKean, J Shatah. The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form. Comm Pure Appl Math, 1991, 44(8-9): 1067–1080
https://doi.org/10.1002/cpa.3160440817
31 T Mizumachi. Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential. Kyoto J Math, 2008, 48: 471–497
https://doi.org/10.1215/kjm/1250271380
32 A Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin: Springer-Verlag, 1983
https://doi.org/10.1007/978-1-4612-5561-1
33 G S Perelman. Asymptotic stability of solitons for nonlinear Schrödinger equations. Comm Partial Differential Equations, 2004, 29: 1051–1095
https://doi.org/10.1081/PDE-200033754
34 F Pusateri, A Soffer. Bilinear estimates in the presence of a large potential and a critical NLS in 3d. arXiv: 2003.00312
35 I Rodnianski, W Schlag, A Soffer. Asymptotic stability of N-soliton states of NLS. arXiv: 0309114
36 W. SchlagStable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann of Math, 2009, 169: 139–227
https://doi.org/10.4007/annals.2009.169.139
37 I M Sigal. Nonlinear wave and Schrödinger equations, I. Instability of periodic and quasi-periodic solutions. Comm Math Phys, 1993, 153: 297–320
https://doi.org/10.1007/BF02096645
38 A Soffer, M I Weinstein. Multichannel nonlinear scattering theory for nonintegrable equations. Comm Math Phys, 1989, 342: 312–327
https://doi.org/10.1007/BFb0035679
39 A Soffer, M I Weinstein. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent Math, 1999, 136(1): 9–74
https://doi.org/10.1007/s002220050303
40 A Soffer, M I Weinstein. Selection of the ground state for nonlinear Schrödinger equations. Rev Math Phys, 2004, 16(8): 977–1071
https://doi.org/10.1142/S0129055X04002175
41 G Staffilani. On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations. Duke Math J, 1997, 86(1): 109–142
https://doi.org/10.1215/S0012-7094-97-08604-X
42 M I Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J Math Anal, 1985, 16: 472–491
https://doi.org/10.1137/0516034
43 M I Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm Pure Appl Math, 1986, 39: 51–67
https://doi.org/10.1002/cpa.3160390103
[1] Gengen ZHANG,Aiguo XIAO. Exact and numerical stability analysis of reaction-diffusion equations with distributed delays[J]. Front. Math. China, 2016, 11(1): 189-205.
[2] Qiuxiang FENG, Rong YUAN. Existence of almost periodic solutions for neutral delay difference systems[J]. Front Math Chin, 2009, 4(3): 437-462.
[3] Renjun DUAN, Seiji UKAI, Tong YANG. A combination of energy method and spectral analysis for study of equations of gas motion[J]. Front Math Chin, 2009, 4(2): 253-282.
[4] Hongjiong TIAN, Dongyue ZHANG, Yeguo SUN. Delay-independent stability of Euler method for nonlinear one-dimensional diffusion equation with constant delay?[J]. Front Math Chin, 2009, 4(1): 169-179.
[5] Chengming HUANG, Stefan VANDEWALLE. Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays[J]. Front Math Chin, 2009, 4(1): 63-87.
[6] Shoufu LI. A review of theoretical and numerical analysis for nonlinear stiff Volterra functional differential equations[J]. Front Math Chin, 2009, 4(1): 23-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed