Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (5) : 851-866    https://doi.org/10.1007/s11464-020-0867-4
RESEARCH ARTICLE
Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system
Wenjing BI, Chunlei TANG()
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
 Download: PDF(275 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the Schrödinger-KdV system

{Δu+λ1(x)u=u3+βuv,uH1(N),Δv+λ2(x)v=12v2+β2u2,vH1(N),

where N=1,2,3, λi(x)C(N,),lim|x|λi(x)=λi(), and λi(x)λi(),i= 1,2,a.e. xN.We obtain the existence of nontrivial ground state solutions for the above system by variational methods and the Nehari manifold.

Keywords Schrödinger-KdV system      variational methods      Nehari manifold      ground state solutions     
Corresponding Author(s): Chunlei TANG   
Issue Date: 19 November 2020
 Cite this article:   
Wenjing BI,Chunlei TANG. Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system[J]. Front. Math. China, 2020, 15(5): 851-866.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0867-4
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I5/851
1 J Albert, S Bhattarai. Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv Differential Equations, 2013, 18: 1129–1164
2 J Albert, J A Pava. Existence and stability of ground-states solutions of a Schrödinger-Kdv system. Proc Roy Soc Edinburgh Sect A, 2003, 133(05): 987–1029
https://doi.org/10.1017/S030821050000278X
3 A H Ardila. Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction. Nonlinear Anal, 2018, 167: 1–20
https://doi.org/10.1016/j.na.2017.10.013
4 A H Ardila. Existence and stability of a two-parameter family of solitary waves for a logarithmic NLS-KdV system. Nonlinear Anal, 2019, 189: 111563
https://doi.org/10.1016/j.na.2019.06.022
5 E Colorado. Existence of bound and ground states for a system of coupled nonlinear Schrödinger-KdV equations. C R Math Acad Sci Paris, 2015, 353(6): 511–516
https://doi.org/10.1016/j.crma.2015.03.011
6 E Colorado. On the existence of bound and ground states for some coupled nonlinear Schrödinger-Korteweg-de Vries equations. Adv Nonlinear Anal, 2017, 6(4): 407–426
https://doi.org/10.1515/anona-2015-0181
7 J P Dias, Figueira Mário, F Oliveira. Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity. C R Math Acad Sci Paris, 2010, 348(19-20): 1079–1082
https://doi.org/10.1016/j.crma.2010.09.018
8 M Funakoshi, M Oikawa. The resonant interaction between a long internal gravity wave and a surface gravity wave packer packet. J Phys Soc Jpn, 1983, 52(6): 1982–1995
https://doi.org/10.1143/JPSJ.52.1982
9 T Kawahara, N Sugimoto, T Kakutani. Nonlinear interaction between short and long capillary-gravity waves. J Phys Soc Jpn, 1975, 39(5): 1379–1386
https://doi.org/10.1143/JPSJ.39.1379
10 V G Makhankov. On stationary solutions of the Schrödinger equation with a selfconsistent potential satisfying Boussinesqs equation. Phys Lett A, 1974, 50(1): 42–44
https://doi.org/10.1016/0375-9601(74)90344-2
11 K Nishikawa, H Hojo, H Mima, H Ikezi. Coupled nonlinear electron-plasma and ionacoustic waves. Phys Rev Lett, 1974, 33(3): 148–151
https://doi.org/10.1103/PhysRevLett.33.148
12 P H Rabinowitz. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43(2): 270–291
https://doi.org/10.1007/BF00946631
13 M Willem. Minimax Theorems. Progr Nonlinear Differential Equations Appl, Vol 24. Boston: Birkhäuser, 1996
https://doi.org/10.1007/978-1-4612-4146-1
14 N Yajima, J Satsuma. Soliton solutions in a diatomic lattice system. Prog Theor Phys, 1979, 62(2): 370–378
https://doi.org/10.1143/PTP.62.370
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed