|
|
|
Properties of Berwald scalar curvature |
Ming LI1( ), Lihong ZHANG2 |
1. Mathematical Science Research Center, Chongqing University of Technology, Chongqing 400054, China 2. School of Sciences, Chongqing University of Technology, Chongqing 400054, China |
|
|
|
|
Abstract We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature. As a consequence, Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds. For (α,β)-metrics on manifold of dimension greater than 2, if the mean Landsberg curvature and the Berwald scalar curvature both vanish, then the Berwald curvature also vanishes.
|
| Keywords
Landsberg curvature
Berwald curvature
E-curvature
S-curvature Berwald scalar curvature
|
|
Corresponding Author(s):
Ming LI
|
|
Issue Date: 05 February 2021
|
|
| 1 |
D Bao, S-S Chern, Z Shen. An Introduction to Riemann-Finsler Geometry. Berlin: Springer-Verlag, 2000
https://doi.org/10.1007/978-1-4612-1268-3
|
| 2 |
G Chen, Q He, S Pan. On weak Berwald (α, β)-metrics of scalar flag curvature. J Geom Phys, 2014, 86: 112–121
https://doi.org/10.1016/j.geomphys.2014.07.031
|
| 3 |
S-S Chern, Z Shen. Riemann-Finsler Geometry. Singapore: World Scientific, 2005
https://doi.org/10.1142/5263
|
| 4 |
M Crampin. A condition for a Landsberg space to be Berwaldian. Publ Math Debrecen, 2018, 93(1-2): 143–155
https://doi.org/10.5486/PMD.2018.8111
|
| 5 |
H Feng, M Li. Adiabatic limit and connections in Finsler geometry. Comm Anal Geom, 2013, 21(3): 607–624
https://doi.org/10.4310/CAG.2013.v21.n3.a6
|
| 6 |
M Li. Equivalence theorems of Minkowski spaces and applications in Finsler geometry. Acta Math Sinica (Chin Ser), 2019, 62(2): 177–190 (in Chinese)
|
| 7 |
X Mo. An Introduction to Finsler Geometry. Singapore: World Scientific, 2006
https://doi.org/10.1142/6095
|
| 8 |
R Schneider. Zur affnen differential geometrie im Groen. I. Math Z, 1967, 101: 375–406
https://doi.org/10.1007/BF01109803
|
| 9 |
Y Shen, Z Shen. Introduction to Modern Finsler Geometry. Singapore: World Scientific, 2016
https://doi.org/10.1142/9726
|
| 10 |
Z Shen. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128(2): 306–328
https://doi.org/10.1006/aima.1997.1630
|
| 11 |
Z Shen. Differential Geometry of Spray and Finsler Spaces. Dordrecht: Springer, 2001
https://doi.org/10.1007/978-94-015-9727-2
|
| 12 |
Z Shen. Lectures on Finsler Geometry. Singapore: World Scientific, 2001
https://doi.org/10.1142/4619
|
| 13 |
Z Shen. Landsberg curvature, S-curvature and Riemann curvature. In: Bao D, Bryant R L, Chern S-S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, Vol 50. Cambridge: Cambridge Univ Press, 2004, 303–355
|
| 14 |
V Simon, S Schellschmidt, H Viesel. Introduction to the Affine Differential Geometry of Hypersurfaces. Tokyo: Science Univ Tokyo, 1991
|
| 15 |
W Zhang. Lectures on Chern-Weil Theory andWitten Deformations. Singapore: World Scientific,2001
https://doi.org/10.1142/4756
|
| 16 |
Y Zou, X Cheng. The generalized unicorn problem on (α, β)-metrics. J Math Anal Appl, 2014, 414(2): 574–589
https://doi.org/10.1016/j.jmaa.2014.01.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|