Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1143-1153    https://doi.org/10.1007/s11464-020-0872-7
RESEARCH ARTICLE
Properties of Berwald scalar curvature
Ming LI1(), Lihong ZHANG2
1. Mathematical Science Research Center, Chongqing University of Technology, Chongqing 400054, China
2. School of Sciences, Chongqing University of Technology, Chongqing 400054, China
 Download: PDF(296 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature. As a consequence, Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds. For (α,β)-metrics on manifold of dimension greater than 2, if the mean Landsberg curvature and the Berwald scalar curvature both vanish, then the Berwald curvature also vanishes.

Keywords Landsberg curvature      Berwald curvature      E-curvature      S-curvature Berwald scalar curvature     
Corresponding Author(s): Ming LI   
Issue Date: 05 February 2021
 Cite this article:   
Ming LI,Lihong ZHANG. Properties of Berwald scalar curvature[J]. Front. Math. China, 2020, 15(6): 1143-1153.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0872-7
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1143
1 D Bao, S-S Chern, Z Shen. An Introduction to Riemann-Finsler Geometry. Berlin: Springer-Verlag, 2000
https://doi.org/10.1007/978-1-4612-1268-3
2 G Chen, Q He, S Pan. On weak Berwald (α, β)-metrics of scalar flag curvature. J Geom Phys, 2014, 86: 112–121
https://doi.org/10.1016/j.geomphys.2014.07.031
3 S-S Chern, Z Shen. Riemann-Finsler Geometry. Singapore: World Scientific, 2005
https://doi.org/10.1142/5263
4 M Crampin. A condition for a Landsberg space to be Berwaldian. Publ Math Debrecen, 2018, 93(1-2): 143–155
https://doi.org/10.5486/PMD.2018.8111
5 H Feng, M Li. Adiabatic limit and connections in Finsler geometry. Comm Anal Geom, 2013, 21(3): 607–624
https://doi.org/10.4310/CAG.2013.v21.n3.a6
6 M Li. Equivalence theorems of Minkowski spaces and applications in Finsler geometry. Acta Math Sinica (Chin Ser), 2019, 62(2): 177–190 (in Chinese)
7 X Mo. An Introduction to Finsler Geometry. Singapore: World Scientific, 2006
https://doi.org/10.1142/6095
8 R Schneider. Zur affnen differential geometrie im Groen. I. Math Z, 1967, 101: 375–406
https://doi.org/10.1007/BF01109803
9 Y Shen, Z Shen. Introduction to Modern Finsler Geometry. Singapore: World Scientific, 2016
https://doi.org/10.1142/9726
10 Z Shen. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128(2): 306–328
https://doi.org/10.1006/aima.1997.1630
11 Z Shen. Differential Geometry of Spray and Finsler Spaces. Dordrecht: Springer, 2001
https://doi.org/10.1007/978-94-015-9727-2
12 Z Shen. Lectures on Finsler Geometry. Singapore: World Scientific, 2001
https://doi.org/10.1142/4619
13 Z Shen. Landsberg curvature, S-curvature and Riemann curvature. In: Bao D, Bryant R L, Chern S-S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, Vol 50. Cambridge: Cambridge Univ Press, 2004, 303–355
14 V Simon, S Schellschmidt, H Viesel. Introduction to the Affine Differential Geometry of Hypersurfaces. Tokyo: Science Univ Tokyo, 1991
15 W Zhang. Lectures on Chern-Weil Theory andWitten Deformations. Singapore: World Scientific,2001
https://doi.org/10.1142/4756
16 Y Zou, X Cheng. The generalized unicorn problem on (α, β)-metrics. J Math Anal Appl, 2014, 414(2): 574–589
https://doi.org/10.1016/j.jmaa.2014.01.011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed