Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1121-1142    https://doi.org/10.1007/s11464-020-0878-1
RESEARCH ARTICLE
Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line
Boling GUO1, Jun WU2()
1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
2. Graduate School of China Academy of Engineering Physics, Beijing 100088, China
 Download: PDF(317 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main purpose of this paper is to consider the initial-boundary value problem for the 1D mixed nonlinear Schrödinger equation ut=iαuxx+βu2ux+γ|u|2ux+i|u|2u on the half-line with inhomogeneous boundary condition. We combine Laplace transform method with restricted norm method to prove the local well-posedness and continuous dependence on initial and boundary data in low regularity Sobolev spaces. Moreover, we show that the nonlinear part of the solution on the half-line is smoother than the initial data.

Keywords Mixed nonlinear Schrödinger (MNLS) equations      initial-boundary value problem (IBVP)      Bourgain spaces      local well-posedness     
Corresponding Author(s): Jun WU   
Issue Date: 05 February 2021
 Cite this article:   
Boling GUO,Jun WU. Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line[J]. Front. Math. China, 2020, 15(6): 1121-1142.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0878-1
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1121
1 J L Bona, S M Sun, B Y Zhang. A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Comm Partial Differential Equations, 2003, 28(7-8): 1391–1436
https://doi.org/10.1081/PDE-120024373
2 J L Bona, S M Sun, B Y Zhang. Boundary smoothing properties of the Kortewegde Vries equation in a quarter plane and applications. Dyn Partial Differ Equ, 2006, 3(1): 1–70
https://doi.org/10.4310/DPDE.2006.v3.n1.a1
3 J L Bona, S M, Sun B Y Zhang. Nonhomogeneous boundary-value problems for onedimensional nonlinear Schrödinger equations. J Math Pures Appl, 2018, 109: 1–66
https://doi.org/10.1016/j.matpur.2017.11.001
4 J Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schr?odinger equations. Geom Funct Anal, 1993, 3: 107–156
https://doi.org/10.1007/BF01896020
5 J Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation. Geom Funct Anal, 1993, 3: 209–262
https://doi.org/10.1007/BF01895688
6 R A Capistrano-Filho, M Cavalcante. Stabilization and control for the biharmonic Schrödinger equation. Appl Math Optim, 2019, doi.org/10.1007/s00245-019-09640-8
https://doi.org/10.1007/s00245-019-09640-8
7 Y M Chen. The initial-boundary value problem for a class of nonlinear Schr?odinger equations. Acta Math Sci Ser B Engl Ed, 1986, 6(4): 405–418
https://doi.org/10.1016/S0252-9602(18)30500-9
8 F M Chirst, M I. Weinstein Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 1991, 100(1): 87–109
https://doi.org/10.1016/0022-1236(91)90103-C
9 J E Colliander, C E Kenig. The generalized Korteweg-de Vries equation on the half line. Comm Partial Differential Equations, 2002, 27(11-12): 2187–2266
https://doi.org/10.1081/PDE-120016157
10 M B Erdoğan, N Tzirakis. Regularity properties of the cubic nonlinear Schrödinger equation on the half line. J Funct Anal, 2016, 271(9): 2539–2568
https://doi.org/10.1016/j.jfa.2016.08.012
11 A V Faminskii. Control problems with an integral condition for Korteweg-de Vries equation on unbounded domains. J Optim Theory Appl, 2019, 180: 290–302
https://doi.org/10.1007/s10957-018-1360-z
12 A S Fokas. A unified transform method for solving linear and certain nonlinear PDEs. Proc R Soc Lond A, 1997, 453: 1411–1443
https://doi.org/10.1098/rspa.1997.0077
13 A S Fokas, S Athanassios, A A Himonas, A Alexandrou, D Mantzavinos. The Kortewegde Vries equation on the half-line. Nonlinearity, 2016, 29(2): 489–527
https://doi.org/10.1088/0951-7715/29/2/489
14 B L Guo, S B. TanOn smooth solutions to the initial value problem for the mixed nonlinear Schrödinger equations. Proc Roy Soc Edinburgh Sect A, 1991, 119(1-2): 31–45
https://doi.org/10.1017/S0308210500028298
15 J Holmer. The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line. Differential Integral Equations, 2005, 18(6): 647–668
16 J Holmer. The initial-boundary value problem for Korteweg-de Vries equation. Comm Partial Differential Equations, 2006, 31(8): 1151–1190
https://doi.org/10.1080/03605300600718503
17 D Jerison, C E Kenig. The inhomogeneous Dirichlet problem in Lipschitz domains. J Funct Anal, 1995, 130(1): 161–219
https://doi.org/10.1006/jfan.1995.1067
18 C E Kenig, G Ponce, L Vega. Oscillatory integrals and regularity of dispersive equations. Indiana Univ Math J, 1991, 40(1): 33–69
https://doi.org/10.1512/iumj.1991.40.40003
19 H Takaoka. Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv Differential Equations, 1999, 4: 561{580
20 M Tsutsumi, I. FukudaOn solutions of the derivative nonlinear Schrödinger equation. Funkcial Ekvac, 1980, 23(3): 259–277
[1] Yongsheng MI,Chunlai MU. Cauchy problem for an integrable three-component model with peakon solutions[J]. Front. Math. China, 2014, 9(3): 537-565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed