Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1295-1306    https://doi.org/10.1007/s11464-020-0883-4
RESEARCH ARTICLE
Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras
Zhuo ZHANG, Jixia YUAN(), Xiaomin TANG
School of Mathematical Sciences, Heilongjiang University, Harbin 150080, China
 Download: PDF(262 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We mainly study the super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras. In particular, we prove that all super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras are inner.

Keywords Lie superalgebra      super-Virasoro algebras      super-biderivation      ner super-biderivations     
Corresponding Author(s): Jixia YUAN   
Issue Date: 05 February 2021
 Cite this article:   
Zhuo ZHANG,Jixia YUAN,Xiaomin TANG. Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras[J]. Front. Math. China, 2020, 15(6): 1295-1306.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0883-4
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1295
1 M Brěsar. On generalized biderivations and related maps. J Algebra, 1995, 172(3): 764–786
https://doi.org/10.1006/jabr.1995.1069
2 Z X Chen. Biderivations and linear commuting maps on simple generalized Witt algebras over a field. Electron J Linear Algebra, 2016, 31(1): 1–12
https://doi.org/10.13001/1081-3810.3100
3 X Cheng, M J Wang, J C Sun, H L Zhang. Biderivations and linear commuting maps on the Lie algebras. Linear Multilinear Algebra, 2017, 65(12): 2483–2493
https://doi.org/10.1080/03081087.2016.1277688
4 Y Q Du, Y Wang. Biderivations of generalized matrix algebras. Linear Algebra Appl, 2013, 438(11): 4483–4499
https://doi.org/10.1016/j.laa.2013.02.017
5 G Z Fan, X S Dai. Super-biderivations of Lie superalgebras. Linear Multilinear Algebra, 2017, 65(1): 58–66
https://doi.org/10.1080/03081087.2016.1167815
6 Y Jiao, W D Liu. The derivations and the multiplicative Hom-structures of Filiform Lie Super-algebras Ln,m.Pure Appl Math, 2014, 30(5): 534–542
7 V G Kac. Lie superalgebras. Adv Math, 1977, 26: 8–96
https://doi.org/10.1016/0001-8708(77)90017-2
8 J J Li, G Z Fan. Structures of not-finitely graded Lie superalgebras. J Gen Lie Theory Appl, 2016, 10(1): 5 papers
https://doi.org/10.4172/1736-4337.1000247
9 W H Li, X M Tang, J X Yuan. Super-biderivations and linear super-commuting maps on the super W-algebra W ˜(2, 2).Colloq Math, 2018, 153: 273–300
10 X W Liu, X Q Guo, K M Zhao. Biderivations of block Lie algebras. Linear Algebra Appl, 2018, 538(2): 43–55
https://doi.org/10.1016/j.laa.2017.10.011
11 X M Tang. Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras. Comm Algebra, 2017, 45(12): 5252–5261
https://doi.org/10.1080/00927872.2017.1302456
12 X M Tang. Biderivations of finite-dimensional complex simple Lie algebra. Linear Multilinear Algebra, 2018, 66(2): 250–259
https://doi.org/10.1080/03081087.2017.1295433
13 D Y Wang, X X Yu, Z X Chen. Biderivations of the parabolic subalgebras of simple Lie algebras. J Lie Theory, 2011, 39(11): 4097–4104
https://doi.org/10.1080/00927872.2010.517820
14 C G Xia, X Han, D Y Wang. Linear commuting maps and biderivations on Lie algebras W (a, b).J Lie Theory, 2016, 26(3): 777–786
15 C G Xia, D Y Wang, X Han. Linear super-commuting maps and super-biderivations on the super-Virasoro algebras. Comm Algebra, 2016, 44(12): 5342–5350
https://doi.org/10.1080/00927872.2016.1172617
16 J X Yuan, X M Tang. Super-biderivations of classical simple Lie superalgebras. Aequationes Math, 2018, 92(1): 91–109
https://doi.org/10.1007/s00010-017-0503-x
[1] Shujuan WANG, Jixia YUAN, Wende LIU. Restricted Kac modules for special contact Lie superalgebras of odd type[J]. Front. Math. China, 2020, 15(2): 419-434.
[2] Zhenyuan NI, Jiancai SUN. Super-biderivations on twisted N = 1 Schrödinger-Neveu-Schwarz algebra[J]. Front. Math. China, 2019, 14(5): 907-922.
[3] Jin CHENG. Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations[J]. Front. Math. China, 2016, 11(6): 1451-1470.
[4] Mingzhong WU. Completable nilpotent Lie superalgebras[J]. Front. Math. China, 2015, 10(3): 697-713.
[5] Li REN,Qiang MU,Yongzheng ZHANG. A class of generalized odd Hamiltonian Lie superalgebras[J]. Front. Math. China, 2014, 9(5): 1105-1129.
[6] Lili MA, Liangyun CHEN, Yongzheng ZHANG. Finite-dimensional simple modular Lie superalgebra M[J]. Front Math Chin, 2013, 8(2): 411-441.
[7] Jixia YUAN, Wende LIU. Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras[J]. Front Math Chin, 2013, 8(1): 203-216.
[8] Zhu WEI, Yongzheng ZHANG. Derivations for even part of finite-dimensional modular Lie superalgebra Ω?[J]. Front Math Chin, 2012, 7(6): 1169-1194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed