|
|
|
Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions |
Yemo WU1, Xiurong XU2, Dafeng ZUO1( ) |
1. School of Mathematical Science, University of Science and Technology of China, Hefei 230026, China 2. School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China |
|
| 1 |
M Antonowicz, A P Fordy. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm Math Phys, 1989, 124(3): 465–486
https://doi.org/10.1007/BF01219659
|
| 2 |
E Arbarello, C Concini, V G Kac, C Procesi. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117(1): 1–36
https://doi.org/10.1007/BF01228409
|
| 3 |
V I Arnold. Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann Inst Fourier (Grenoble), 1966, 16: 319–361
https://doi.org/10.5802/aif.233
|
| 4 |
V I Arnold, B A Khesin. Topological Methods in Hydrodynamics. Appl Math Sci, Vol 125. New York: Springer-Verlag, 1998
https://doi.org/10.1007/b97593
|
| 5 |
L F Broer. Approximate equations for long water waves. Appl Sci Res, 1975, 31: 377–395
https://doi.org/10.1007/BF00418048
|
| 6 |
M Chen, S-Q Liu, Y Zhang. Hamiltonian structures and their reciprocal transformations for the r-KdV-CH hierarchy. J Geom Phys, 2009, 59(9): 1227–1243
https://doi.org/10.1016/j.geomphys.2009.06.001
|
| 7 |
D G Ebin, J Marsden. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann of Math, 1970, 92: 102–163
https://doi.org/10.2307/1970699
|
| 8 |
Y Y Ge, D Zuo. A new class of Euler equation on the dual of the N= 1 extended Neveu-Schwarz algebra. J Math Phys, 2018, 59(11): 113505 (8 pp)
https://doi.org/10.1063/1.5051755
|
| 9 |
P Guha, P J Olver. Geodesic flow and two (super) component analog of the Camassa-Holm equation. SIGMA Symmetry Integrability Geom Methods Appl, 2006, 2: Paper 054 (9 pp)
https://doi.org/10.3842/SIGMA.2006.054
|
| 10 |
J Harnad, B A Kupershmidt. Symplectic geometries on T*G, Hamiltonian group actions and integrable systems. J Geom Phys, 1995, 16: 168–206
https://doi.org/10.1016/0393-0440(94)00027-2
|
| 11 |
D D Holm, R I Ivanov. Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J Phys A, 2010, 43(49): 492001 (20 pp)
https://doi.org/10.1088/1751-8113/43/49/492001
|
| 12 |
D J Kaup. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54: 396–408
https://doi.org/10.1143/PTP.54.396
|
| 13 |
B Khesin, G Misiolek. Euler equations on homogeneous spaces and Virasoro orbits. Adv Math, 2003, 176: 116–144
https://doi.org/10.1016/S0001-8708(02)00063-4
|
| 14 |
B A Khesin, R Wendt. The Geometry of Infinite-Dimensional Groups. Ergeb Math Grenzgeb (3), Vol 51. New York: Springer-Verlag, 2009
https://doi.org/10.1007/978-3-540-77263-7
|
| 15 |
A A Kirillov. Orbits of the group of diffeomorphisms of a circle and local superalgebras. Funct Anal Appl, 1980, 15: 135–137
https://doi.org/10.1007/BF01082289
|
| 16 |
A A Kirillov. Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. In: Doebner H D, Palev T D, eds. Twistor Geometry and Non-Linear Systems. Lecture Notes in Math, Vol 970. New York: Springer-Verlag, 1982, 101–123
https://doi.org/10.1007/BFb0066026
|
| 17 |
B Kolev. Bihamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos Trans Roy Soc A, 2007, 365: 2333–2357
https://doi.org/10.1098/rsta.2007.2012
|
| 18 |
B A Kupershmidt. A coupled Korteweg-de Vries equation with dispersion. J Phys A, 1985, 18: L571–L573
https://doi.org/10.1088/0305-4470/18/10/003
|
| 19 |
B A Kupershmidt. Mathematics of dispersive water waves. Comm Math Phys, 1985, 99: 51–73
https://doi.org/10.1007/BF01466593
|
| 20 |
B A Kupershmidt. Lie algebras and Korteweg-de Vries equations. Phys D, 1987, 27: 294–310
https://doi.org/10.1016/0167-2789(87)90033-9
|
| 21 |
P Marcel, V Ovsienko, C Roger. Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators. Lett Math Phys, 1997, 40: 31–39
https://doi.org/10.1023/A:1007310811875
|
| 22 |
G Misiolek. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J Geom Phys, 1998, 24: 203–208
https://doi.org/10.1016/S0393-0440(97)00010-7
|
| 23 |
V Ovsienko, B Khesin. The super Korteweg-de Vries equation as an Euler equation. Funct Anal Appl, 1988, 21: 329–331
https://doi.org/10.1007/BF01077813
|
| 24 |
I A B Strachan, B Szablikowski. Novikov algebras and a classification of multicomponent Camassa-Holm equations. Stud Appl Math, 2014, 133: 84–117
https://doi.org/10.1111/sapm.12040
|
| 25 |
G B Whitham. Variational methods and applications to water waves. Proc Roy Soc Lond Ser A, 1967, 299: 6–25
https://doi.org/10.1098/rspa.1967.0119
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|