Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1231-1243    https://doi.org/10.1007/s11464-020-0891-4
RESEARCH ARTICLE
Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions
Yemo WU1, Xiurong XU2, Dafeng ZUO1()
1. School of Mathematical Science, University of Science and Technology of China, Hefei 230026, China
2. School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China
 Download: PDF(322 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let DN be the multicomponent twisted Heisenberg-Virasoro algebra. We compute the second continuous cohomology group with coeficients in and study the bihamiltonian Euler equations associated to DN and its central extensions.

Keywords Bihamiltonian Euler equation      multicomponent twisted Heisenberg-Virasoro algebra     
Corresponding Author(s): Dafeng ZUO   
Issue Date: 05 February 2021
 Cite this article:   
Yemo WU,Xiurong XU,Dafeng ZUO. Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions[J]. Front. Math. China, 2020, 15(6): 1231-1243.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0891-4
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1231
1 M Antonowicz, A P Fordy. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm Math Phys, 1989, 124(3): 465–486
https://doi.org/10.1007/BF01219659
2 E Arbarello, C Concini, V G Kac, C Procesi. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117(1): 1–36
https://doi.org/10.1007/BF01228409
3 V I Arnold. Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann Inst Fourier (Grenoble), 1966, 16: 319–361
https://doi.org/10.5802/aif.233
4 V I Arnold, B A Khesin. Topological Methods in Hydrodynamics. Appl Math Sci, Vol 125. New York: Springer-Verlag, 1998
https://doi.org/10.1007/b97593
5 L F Broer. Approximate equations for long water waves. Appl Sci Res, 1975, 31: 377–395
https://doi.org/10.1007/BF00418048
6 M Chen, S-Q Liu, Y Zhang. Hamiltonian structures and their reciprocal transformations for the r-KdV-CH hierarchy. J Geom Phys, 2009, 59(9): 1227–1243
https://doi.org/10.1016/j.geomphys.2009.06.001
7 D G Ebin, J Marsden. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann of Math, 1970, 92: 102–163
https://doi.org/10.2307/1970699
8 Y Y Ge, D Zuo. A new class of Euler equation on the dual of the N= 1 extended Neveu-Schwarz algebra. J Math Phys, 2018, 59(11): 113505 (8 pp)
https://doi.org/10.1063/1.5051755
9 P Guha, P J Olver. Geodesic flow and two (super) component analog of the Camassa-Holm equation. SIGMA Symmetry Integrability Geom Methods Appl, 2006, 2: Paper 054 (9 pp)
https://doi.org/10.3842/SIGMA.2006.054
10 J Harnad, B A Kupershmidt. Symplectic geometries on T*G, Hamiltonian group actions and integrable systems. J Geom Phys, 1995, 16: 168–206
https://doi.org/10.1016/0393-0440(94)00027-2
11 D D Holm, R I Ivanov. Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J Phys A, 2010, 43(49): 492001 (20 pp)
https://doi.org/10.1088/1751-8113/43/49/492001
12 D J Kaup. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54: 396–408
https://doi.org/10.1143/PTP.54.396
13 B Khesin, G Misiolek. Euler equations on homogeneous spaces and Virasoro orbits. Adv Math, 2003, 176: 116–144
https://doi.org/10.1016/S0001-8708(02)00063-4
14 B A Khesin, R Wendt. The Geometry of Infinite-Dimensional Groups. Ergeb Math Grenzgeb (3), Vol 51. New York: Springer-Verlag, 2009
https://doi.org/10.1007/978-3-540-77263-7
15 A A Kirillov. Orbits of the group of diffeomorphisms of a circle and local superalgebras. Funct Anal Appl, 1980, 15: 135–137
https://doi.org/10.1007/BF01082289
16 A A Kirillov. Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. In: Doebner H D, Palev T D, eds. Twistor Geometry and Non-Linear Systems. Lecture Notes in Math, Vol 970. New York: Springer-Verlag, 1982, 101–123
https://doi.org/10.1007/BFb0066026
17 B Kolev. Bihamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos Trans Roy Soc A, 2007, 365: 2333–2357
https://doi.org/10.1098/rsta.2007.2012
18 B A Kupershmidt. A coupled Korteweg-de Vries equation with dispersion. J Phys A, 1985, 18: L571–L573
https://doi.org/10.1088/0305-4470/18/10/003
19 B A Kupershmidt. Mathematics of dispersive water waves. Comm Math Phys, 1985, 99: 51–73
https://doi.org/10.1007/BF01466593
20 B A Kupershmidt. Lie algebras and Korteweg-de Vries equations. Phys D, 1987, 27: 294–310
https://doi.org/10.1016/0167-2789(87)90033-9
21 P Marcel, V Ovsienko, C Roger. Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators. Lett Math Phys, 1997, 40: 31–39
https://doi.org/10.1023/A:1007310811875
22 G Misiolek. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J Geom Phys, 1998, 24: 203–208
https://doi.org/10.1016/S0393-0440(97)00010-7
23 V Ovsienko, B Khesin. The super Korteweg-de Vries equation as an Euler equation. Funct Anal Appl, 1988, 21: 329–331
https://doi.org/10.1007/BF01077813
24 I A B Strachan, B Szablikowski. Novikov algebras and a classification of multicomponent Camassa-Holm equations. Stud Appl Math, 2014, 133: 84–117
https://doi.org/10.1111/sapm.12040
25 G B Whitham. Variational methods and applications to water waves. Proc Roy Soc Lond Ser A, 1967, 299: 6–25
https://doi.org/10.1098/rspa.1967.0119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed