|
|
|
Bi-block positive semidefiniteness of bi-block symmetric tensors |
Zheng-Hai HUANG, Xia LI, Yong WANG( ) |
| School of Mathematics, Tianjin University, Tianjin 300354, China |
|
|
|
|
Abstract The positive definiteness of elasticity tensors plays an important role in the elasticity theory. In this paper, we consider the bi-block symmetric tensors, which contain elasticity tensors as a subclass. First, we define the bi-block M-eigenvalue of a bi-block symmetric tensor, and show that a bi-block symmetric tensor is bi-block positive (semi)definite if and only if its smallest bi-block M-eigenvalue is (nonnegative) positive. Then, we discuss the distribution of bi-block M-eigenvalues, by which we get a sufficient condition for judging bi-block positive (semi)definiteness of the bi-block symmetric tensor involved. Particularly, we show that several classes of bi-block symmetric tensors are bi-block positive definite or bi-block positive semidefinite, including bi-block (strictly) diagonally dominant symmetric tensors and bi-block symmetric (B)B0-tensors. These give easily checkable sufficient conditions for judging bi-block positive (semi)definiteness of a bi-block symmetric tensor. As a byproduct, we also obtain two easily checkable suffcient conditions for the strong ellipticity of elasticity tensors.
|
| Keywords
Bi-block symmetric tensor
bi-block symmetric Z-tensor
bi-block symmetric B0-tensor
diagonally dominant bi-block symmetric tensor
bi-block M-eigenvalue
|
|
Corresponding Author(s):
Yong WANG
|
|
Issue Date: 26 March 2021
|
|
| 1 |
H Che, H Chen, Y Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. J Ind Manag Optim, 2020, 16: 309–324
https://doi.org/10.3934/jimo.2018153
|
| 2 |
S Chirită, I-D Ghiba. Strong ellipticity and progressive waves in elastic materials with voids. Proc R Soc Lond A, 2010, 466: 439–458
https://doi.org/10.1098/rspa.2009.0360
|
| 3 |
M D Choi. Positive semidefinite biquadratic forms. Linear Algebra Appl, 1975, 12: 95–100
https://doi.org/10.1016/0024-3795(75)90058-0
|
| 4 |
W Ding, J Liu, L Qi, H Yan. Elasticity M-tensors and the strong ellipticity condition. Appl Math Comput, 2020, 373: 124982
https://doi.org/10.1016/j.amc.2019.124982
|
| 5 |
W Ding, Z Luo, L Qi.P -tensors, P0-tensors, and their applications. Linear Algebra Appl, 2018, 555: 336–354
https://doi.org/10.1016/j.laa.2018.06.028
|
| 6 |
W Ding, L Qi, Y Wei. M-tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278
https://doi.org/10.1016/j.laa.2013.08.038
|
| 7 |
W Ding, L Qi, H Yan. On some sufficient conditions for strong ellipticity. arXiv: 1705.05081
|
| 8 |
D Han, H H, Dai L Qi. Conditions for strong ellipticity of anisotropic elastic material. J Elasticity, 2009, 97: 1–13
https://doi.org/10.1007/s10659-009-9205-5
|
| 9 |
D Han, L Qi. A successive approximation method for quantum separability. Front Math China, 2013, 8: 1275–1293
https://doi.org/10.1007/s11464-013-0274-1
|
| 10 |
S Haussühl. Physical Properties of Crystals: An Introduction.Weinheim: Wiley-VCH Verlag, 2007
https://doi.org/10.1002/9783527621156
|
| 11 |
J He, C Li, Y Wei. M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity. Appl Math Lett, 2020, 102: 106137
https://doi.org/10.1016/j.aml.2019.106137
|
| 12 |
S Hu, Z H Huang. Alternating direction method for bi-quadratic programming. J Global Optim, 2011, 51: 429–446
https://doi.org/10.1007/s10898-010-9635-4
|
| 13 |
S Hu, Z H Huang, C Ling, L Qi. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2013, 50: 508–531
https://doi.org/10.1016/j.jsc.2012.10.001
|
| 14 |
S, Hu L Qi, Y Song, G Zhang. Geometric measure of entanglement of multipartite mixed states. Int J Software Informatics, 2014, 8: 317–326
|
| 15 |
S Hu, L Qi, G. ZhangComputing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys Rev A, 2016, 93: 012304
https://doi.org/10.1103/PhysRevA.93.012304
|
| 16 |
Z H Huang, L Qi. Positive definiteness of paired symmetric tensors and elasticity tensors. J Comput Appl Math, 2018, 338: 22–43
https://doi.org/10.1016/j.cam.2018.01.025
|
| 17 |
Z H Huang, L Qi. Tensor complementarity problems-part I: basic theory. J Optim Theory Appl, 2019, 183: 1–23
https://doi.org/10.1007/s10957-019-01566-z
|
| 18 |
S Li, C Li, Y Li. M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor. J Comput Appl Math, 2019, 356: 391–401
https://doi.org/10.1016/j.cam.2019.01.013
|
| 19 |
S H Li, Y T. LiBounds for the M-spectral radius of a fourth-order partially symmetric tensor. J Inequal Appl, 2018, 2018: 18, doi.org/10.1186/s13660-018-1610-5
https://doi.org/10.1186/s13660-018-1610-5
|
| 20 |
C Ling, J Nie, L Qi, Y Ye. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20: 1286–1310
https://doi.org/10.1137/080729104
|
| 21 |
J Nie, X Z. ZhangPositive maps and separable matrices. SIAM J Optim, 2016, 26: 1236–1256
https://doi.org/10.1137/15M1018514
|
| 22 |
J M Peña. A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J Matrix Anal Appl, 2001, 22: 1027–1037
https://doi.org/10.1137/S0895479800370342
|
| 23 |
J M Peña. On an alternative to Gerschgorin circles and ovals of Cassini. Numer Math, 2003, 95: 337–345
https://doi.org/10.1007/s00211-002-0427-8
|
| 24 |
L Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
|
| 25 |
L Qi, H H Dai, D Han. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4: 349–364
https://doi.org/10.1007/s11464-009-0016-6
|
| 26 |
L Qi, Z H Huang. Tensor complementarity problems-part II: solution methods. J Optim Theory Appl, 2019, 183: 365–385
https://doi.org/10.1007/s10957-019-01568-x
|
| 27 |
L Qi, Z Luo. Tensor Analysis: Spectral Properties and Special Tensors. Philadelphia: SIAM, 2017
https://doi.org/10.1137/1.9781611974751
|
| 28 |
L Qi, Y Song. An even order symmetric B tensor is positive definite. Linear Algebra Appl, 2014, 457: 303–312
https://doi.org/10.1016/j.laa.2014.05.026
|
| 29 |
P Rosakis. Ellipticity and deformations with discontinuous deformation gradients in finite elastrostatics. Arch Ration Mech Anal, 1990, 109: 1–37
https://doi.org/10.1007/BF00377977
|
| 30 |
D Sfyris. The strong ellipticity condition under changes in the current and reference configuration. J Elasticity, 2011, 103: 281–287
https://doi.org/10.1007/s10659-010-9286-1
|
| 31 |
H C Simpson, S J Spector. On copositive matrices and strong ellipticity for isotropic elastic materials. Arch Ration Mech Anal, 1983, 84: 55–68
https://doi.org/10.1007/BF00251549
|
| 32 |
Y Song, L Qi. An initial study on P; P0; B and B0 tensors. arXiv: 1403.1118v3
|
| 33 |
Y Song, L Qi. Properties of some classes of structured tensors. J Optim Theory Appl, 2015, 165: 854–873
https://doi.org/10.1007/s10957-014-0616-5
|
| 34 |
B Straughan. Stability and uniqueness in double porosity elasticity. Internat J Engrg Sci, 2013, 65: 1–8
https://doi.org/10.1016/j.ijengsci.2013.01.001
|
| 35 |
G Wang, L Sun, L Liu. M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors. Complexity, 2020, 2020: 2474278
https://doi.org/10.1155/2020/2474278
|
| 36 |
Y Wang, M Aron. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89–96
https://doi.org/10.1007/BF00042193
|
| 37 |
Y J Wang, L Qi, X Z Zhang. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589–601
https://doi.org/10.1002/nla.633
|
| 38 |
Y Xu, W Gu, Z H Huang. Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems. Front Math China, 2019, 14: 661–671
https://doi.org/10.1007/s11464-019-0770-z
|
| 39 |
L Ye, Z Chen. Further results on B-tensors with application to location of real eigenvalues. Front Math China, 2017, 12: 1375–1392
https://doi.org/10.1007/s11464-016-0545-8
|
| 40 |
P Yuan, L You. Some remarks on P; P0; B and B0 tensors. Linear Algebra Appl, 2014, 459: 511–521
https://doi.org/10.1016/j.laa.2014.07.043
|
| 41 |
L Zhang, L Qi, G Zhou. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452
https://doi.org/10.1137/130915339
|
| 42 |
L M Zubov, A N Rudev. On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials. ZAMM Z Angew Math Mech, 2016, 96: 1096–1102
https://doi.org/10.1002/zamm.201500167
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|