Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 171-185    https://doi.org/10.1007/s11464-021-0895-8
RESEARCH ARTICLE
Biquadratic tensors, biquadratic decompositions, and norms of biquadratic tensors
Liqun QI1,2,3, Shenglong HU2, Xinzhen ZHANG4(), Yanwei XU1
1. Huawei Theory Research Lab, Hong Kong, China
2. Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
3. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
4. School of Mathematics, Tianjin University, Tianjin 300354, China
 Download: PDF(284 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biquadratic tensors play a central role in many areas of science. Examples include elastic tensor and Eshelby tensor in solid mechanics, and Riemannian curvature tensor in relativity theory. The singular values and spectral norm of a general third order tensor are the square roots of the M-eigenvalues and spectral norm of a biquadratic tensor, respectively. The tensor product operation is closed for biquadratic tensors. All of these motivate us to study biquadratic tensors, biquadratic decomposition, and norms of biquadratic tensors. We show that the spectral norm and nuclear norm for a biquadratic tensor may be computed by using its biquadratic structure. Then, either the number of variables is reduced, or the feasible region can be reduced. We show constructively that for a biquadratic tensor, a biquadratic rank-one decomposition always exists, and show that the biquadratic rank of a biquadratic tensor is preserved under an independent biquadratic Tucker decomposition. We present a lower bound and an upper bound of the nuclear norm of a biquadratic tensor. Finally, we define invertible biquadratic tensors, and present a lower bound for the product of the nuclear norms of an invertible biquadratic tensor and its inverse, and a lower bound for the product of the nuclear norm of an invertible biquadratic tensor, and the spectral norm of its inverse.

Keywords Biquadratic tensor      nuclear norm      tensor product      biquadratic rank-one decomposition      biquadratic Tucker decomposition     
Corresponding Author(s): Xinzhen ZHANG   
Issue Date: 26 March 2021
 Cite this article:   
Liqun QI,Shenglong HU,Xinzhen ZHANG, et al. Biquadratic tensors, biquadratic decompositions, and norms of biquadratic tensors[J]. Front. Math. China, 2021, 16(1): 171-185.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0895-8
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/171
1 P Comon, G Golub, L Lim, B Mourrain. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30(3): 1254–1279
https://doi.org/10.1137/060661569
2 L De Lathauwer, B De Moor, J Vandewalle. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21(4): 1253–1278
https://doi.org/10.1137/S0895479896305696
3 S Friedland, L Lim. Nuclear norm of high-order tensors. Math Comp, 2018, 87(311): 1255–1281
https://doi.org/10.1090/mcom/3239
4 S Hu. Relations of the nuclear norm of a tensor and its matrix flattenings. Linear Algebra Appl, 2015, 478: 188–199
https://doi.org/10.1016/j.laa.2015.04.003
5 B Jiang, F Yang, S Zhang. Tensor and its tucker core: The invariance relationships. Numer Linear Algebra Appl, 2017, 24(3): e2086
https://doi.org/10.1002/nla.2086
6 J K Knowles, E Sternberg. On the ellipticity of the equations of nonlinear elastostatistics for a special material. J. Elasticity, 1975, 5: 341–361
https://doi.org/10.1007/BF00126996
7 T Kolda, B Bader. Tensor decomposition and applications. SIAM Rev, 2009, 51(3): 455–500
https://doi.org/10.1137/07070111X
8 C Ling, J Nie, L Qi, Y Ye. Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Matrix Anal Appl, 2009, 20(3): 1286–1310
https://doi.org/10.1137/080729104
9 J F Nye. Physical Properties of Crystals: Their Representation by Tensors and Matrices. 2nd ed. Oxford: Clarendon Press, 1985
10 L Qi, H Dai, D Han. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4(2): 349–364
https://doi.org/10.1007/s11464-009-0016-6
11 L Qi, S Hu, Y Xu. Spectral norm and nuclear norm of a third order tensor. J Ind Manag Optim, doi.org/10.3934/jimo.2021010
12 L Qi, S Hu, X Zhang, Y Chen. Tensor norm, cubic power and Gelfand limit.arXiv: 1909.10942
13 W Rindler. Relativity: Special, General and Cosmological. 2nd ed. Oxford: Oxford Univ Press, 2006
14 H Simpson, S Spector. On copositive matrices and strong ellipticity for isotropic elastic materials. Arch Ration Mech Anal, 1983, 84: 55–68
https://doi.org/10.1007/BF00251549
15 Y Wang, L Qi, X Zhang. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16(7): 589–601
https://doi.org/10.1002/nla.633
16 H Xiang, L Qi, Y Wei. M-eigenvalues of Riemann curvature tensor. Commun Math Sci, 2018, 16(8): 2301–2315
https://doi.org/10.4310/CMS.2018.v16.n8.a10
17 M Yuan, C Zhang. On tensor completion via nuclear norm minimization. Found Comput Math, 2016, 16(4): 1031{1068
https://doi.org/10.1007/s10208-015-9269-5
18 W Zou, Q He, M Huang, Q Zheng. Eshelby's problem of non-elliptical inclusions. J Mech Phys Solids, 2010, 58(3): 346–372
https://doi.org/10.1016/j.jmps.2009.11.008
[1] Dong LIU, Xiufu ZHANG. Tensor product weight modules of Schrödinger-Virasoro algebras[J]. Front. Math. China, 2019, 14(2): 381-393.
[2] Xin WANG, Yuan SHEN. Artin-Schelter regularity of twisted tensor products[J]. Front. Math. China, 2018, 13(5): 1141-1167.
[3] Meixiang CHEN,Qinghua CHEN. Tensor products of tilting modules[J]. Front. Math. China, 2017, 12(1): 51-62.
[4] Jianzhi HAN. Constructing tensor products of modules for C2-cofinite vertex operator superalgebras[J]. Front. Math. China, 2014, 9(3): 477-494.
[5] Yuan CHEN. Module-relative-Hochschild (co)homology of tensor products[J]. Front Math Chin, 2012, 7(3): 415-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed