Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 59-93    https://doi.org/10.1007/s11464-021-0896-7
RESEARCH ARTICLE
Dynamical behaviors of non-autonomous fractional FitzHugh-Nagumo system driven by additive noise in unbounded domains
Chunxiao GUO1, Yiju CHEN2, Ji SHU3(), Xinguang YANG4
1. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
2. Department of Mathematics, Sichuan University, Chengdu 610065, China
3. School of Mathematical Science, Laurent Mathematics Center and V. C. & V. R. Key Lab, Sichuan Normal University, Chengdu 610066, China
4. Department of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
 Download: PDF(365 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The regularity of random attractors is considered for the nonautonomous fractional stochastic FitzHugh-Nagumo system. We prove that the system has a pullback random attractor that is compact in Hs(n)×L2(n) and attracts all tempered random sets of Ls(n)×L2(n) in the topology of Hs(n)×L2(n) with s(0,1). By the idea of positive and negative truncations, spectral decomposition in bounded domains, and tail estimates, we achieved the desired results.

Keywords Fractional stochastic FitzHugh-Nagumo system      random attractor      asymptotic compactness     
Corresponding Author(s): Ji SHU   
Issue Date: 26 March 2021
 Cite this article:   
Chunxiao GUO,Yiju CHEN,Ji SHU, et al. Dynamical behaviors of non-autonomous fractional FitzHugh-Nagumo system driven by additive noise in unbounded domains[J]. Front. Math. China, 2021, 16(1): 59-93.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0896-7
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/59
1 A Adili, B Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Discrete Contin Dyn Syst Ser S, 2013, 2013(Special): 1–10
2 A Adili, B Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete Contin Dyn Syst Ser B, 2013, 18: 643–666
https://doi.org/10.3934/dcdsb.2013.18.643
3 L Arnold. Random Dynamical Systems. New York: Springer-Verlag, 1998
https://doi.org/10.1007/978-3-662-12878-7
4 P W Bates, K Lu, B Wang. Random attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential Equations, 2009, 246: 845–869
https://doi.org/10.1016/j.jde.2008.05.017
5 H Crauel, A Debussche, F Flandoli. Random attractors. J Dynam Differential Equations, 1997, 9: 307–341
https://doi.org/10.1007/BF02219225
6 E Di Nezza, G, Palatucci E Valdinoci. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573
https://doi.org/10.1016/j.bulsci.2011.12.004
7 R FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1961, 1: 445–466
https://doi.org/10.1016/S0006-3495(61)86902-6
8 A Gu, D Li, B Wang, H Yang. Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn: J Differential Equations, 2018, 264: 7094–7137
https://doi.org/10.1016/j.jde.2018.02.011
9 A Gu, Y Li. Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions. Commun Nonlinear Sci Numer Simul, 2014, 19: 3929–3937
https://doi.org/10.1016/j.cnsns.2014.04.005
10 B Guo, Z Huo. Global well-posedness for the fractional nonlinear Schrödinger equation. Comm Partial Differential Equations, 2011, 36: 247–255
https://doi.org/10.1080/03605302.2010.503769
11 B Guo, X Pu, F Huang. Fractional Partial Differential Equations and their Numerical Solutions. Beijing: Science Press, 2011(in Chinese)
12 J Huang, W. ShenGlobal attractors for partly dissipative random stochastic reaction diffusion systems. Int J Evol Equ, 2010, 4: 383–411
13 Y Li, J Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete Contin Dyn Syst Ser B, 2016, 21: 1203–1223
https://doi.org/10.3934/dcdsb.2016.21.1203
14 F Liu, I Turner, V Anh, Q Yang, K Burrage. A numerical method for the fractional FitzHugh-Nagumo monodomain model. ANZIAM J, 2013, 54: C608–C629
https://doi.org/10.21914/anziamj.v54i0.6372
15 H Lu, P W Bates, S Lu, M Zhang. Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain. Commun Math Sci, 2016, 14: 273–295
https://doi.org/10.4310/CMS.2016.v14.n1.a11
16 H Lu, P W Bates, J Xin, M Zhang. Asymptotic behavior of stochastic fractional power dissipative equations on Rn: Nonlinear Anal, 2015, 128: 176–198
https://doi.org/10.1016/j.na.2015.06.033
17 M Marion. Finite-dimensional attractors associated with partly dissipative reactiondi ffusion systems. SIAM J Math Anal, 1989, 20: 816–844
https://doi.org/10.1137/0520057
18 M Marion. Inertial manifolds associated to partly dissipative reaction-diffusion systems. J Math Anal Appl, 1989, 143: 295–326
https://doi.org/10.1016/0022-247X(89)90043-7
19 F Morillas, J Valero. Attractors for reaction-diffusion equations in Rn with continuous nonlinearity. Asymptot Anal, 2005, 44: 111–130
20 J Nagumo, S Arimoto, S Yosimzawa. An active pulse transmission line simulating nerve axon. Proc Inst Radio Eng, 1964, 50: 2061–2070
https://doi.org/10.1109/JRPROC.1962.288235
21 X Pu, B Guo. Global weak soltuions of the fractional Landau-Lifshitz-Maxwell equation. J Math Anal Appl, 2010, 372: 86–98
https://doi.org/10.1016/j.jmaa.2010.06.035
22 D Ruelle. Characteristic exponents for a viscous fluid subjected to time dependent forces. Comm Math Phys, 1984, 93: 285–300
https://doi.org/10.1007/BF01258529
23 Z Shao. Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions. J Differential Equations, 1998, 144: 1–43
https://doi.org/10.1006/jdeq.1997.3383
24 J Shu, P Li, J Zhang, O Liao. Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise. J Math Phys, 2015, 56: 102702
https://doi.org/10.1063/1.4934724
25 B Wang. Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains. Nonlinear Anal, 2009, 71: 2811–2828
https://doi.org/10.1016/j.na.2009.01.131
26 B Wang. Upper semicontinuity of random for non-compact random systems. J Differential Equations, 2009, 139: 1–18
27 B Wang. Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems. J Differential Equations, 2012, 253: 1544–1583
https://doi.org/10.1016/j.jde.2012.05.015
28 B Wang. Asymptotic behavior of non-autonomous fractional stochastic reactiondi ffusion equations. Nonlinear Anal, 2017, 158: 60{82
https://doi.org/10.1016/j.na.2017.04.006
29 S Zhou, Z Wang. Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise. J Math Anal Appl, 2016, 441: 648–667
https://doi.org/10.1016/j.jmaa.2016.04.038
[1] Bixiang WANG. Pullback attractors for non-autonomous reaction-diffusion equations on ?n[J]. Front Math Chin, 2009, 4(3): 563-583.
[2] CARABALLO Tomás, LU Kening. Attractors for stochastic lattice dynamical systems with a multiplicative noise[J]. Front. Math. China, 2008, 3(3): 317-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed