Pn" /> Pn" /> Pn" />
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (3) : 901-923    https://doi.org/10.1007/s11464-021-0902-0
RESEARCH ARTICLE
Minimal two-spheres with constant curvature in Pn
Shaoteng ZHANG(), Xiaoxiang JIAO
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(353 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study conformal minimal two-spheres immersed into the quaternionic projective space Pn by using the twistor map. We present a method to construct new minimal two-spheres with constant curvature in Pn, based on the minimal property and horizontal condition of Veronese map in complex projective space. Then we construct some concrete examples of conformal minimal two-spheres in Pn with constant curvature 2/n, n = 4, 5, 6, respectively. Finally, we prove that there exist conformal minimal two-spheres with constant curvature 2/n in Pn (n≥7):

Keywords Quaternionic projective space      twistor map      minimal two-spheres      Veronese sequence     
Corresponding Author(s): Shaoteng ZHANG   
Issue Date: 14 July 2021
 Cite this article:   
Shaoteng ZHANG,Xiaoxiang JIAO. Minimal two-spheres with constant curvature in Pn[J]. Front. Math. China, 2021, 16(3): 901-923.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0902-0
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I3/901
1 A R Aithal. Harmonic maps from S2 to HP2. Osaka J Math, 1986, 23: 255–270
2 A Bahy-El-Dien, J C Wood. The explicit construction of all harmonic two-spheres in quaternionic projective spaces. Proc Lond Math Soc, 1991, 62: 202–224
https://doi.org/10.1112/plms/s3-62.1.202
3 J Bolton, G R Jensen, M Rigoli, L M Woodward. On conformal minimal immersion of S2 into CPn. Math Ann, 1988, 279: 599–620
https://doi.org/10.1007/BF01458531
4 R L Bryant. Conformal and minimal immersions of compact surfaces into the 4-sphere. J Differential Geom, 1982, 17: 455–473
https://doi.org/10.4310/jdg/1214437137
5 X D Chen, X X Jiao. Conformal minimal surfaces immersed into HPn. Ann Mat Pura App, 2017, 196(6): 2063–2076
https://doi.org/10.1007/s10231-017-0653-4
6 J Fei, L He. Classification of homogeneous minimal immersions from S2 to HPn. Ann Mat Pura Appl, 2017, 196(6): 2213–2237
https://doi.org/10.1007/s10231-017-0661-4
7 J Fei, C K Peng, X W Xu. Minimal two-spheres with constant curvature in the quaternionic projective space. Sci China Math, 2020, 63(5): 993–1006
https://doi.org/10.1007/s11425-018-9348-y
8 L He, X X Jiao. Classification of conformal minimal immersions of constant curvature from S2 to HP2. Math Ann, 2014, 359(3-4): 663–694
https://doi.org/10.1007/s00208-014-1013-y
9 L He, X X Jiao. On conformal minimal immersions of S2 in HPn with parallel second fundamental form. Ann Mat Pura Appl, 2015, 194(5): 1301–1317
https://doi.org/10.1007/s10231-014-0420-8
10 G R Jensen, M Rigoli, K Yang. Holomorphic curves in the complex quadric. Bull Aust Math Soc, 1987, 35(1): 125–148
https://doi.org/10.1017/S0004972700013095
11 X X Jiao, H B Cui. Construction of conformal minimal two-spheres in quaternionic projective spaces by twistor map. J Geom Anal, 2021, 31: 888–912
https://doi.org/10.1007/s12220-019-00305-0
12 X X Jiao, Y Xu, J L Xin. Reducible minimal two-spheres of constant curvature in a quaternion projective space. Preprint
13 K Yang. Complete and Compact Minimal Surfaces. Dordrecht: Kluwer Academic Publishers, 1989
https://doi.org/10.1007/978-94-009-1015-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed