|
|
|
Elliptic genera of level N for complete intersections |
Jianbo WANG1( ), Yuyu WANG2, Zhiwang YU1 |
1. School of Mathematics, Tianjin University, Tianjin 300350, China 2. College of Mathematical Science, Tianjin Normal University, Tianjin 300387, China |
|
|
|
|
Abstract We focus on the elliptic genera of level N at the cusps of a congruence subgroup for any complete intersection. Writing the first Chern class of a complete intersection as a product of an integral coefficient c1 and a generator of the 2nd integral cohomology group, we mainly discuss the values of the elliptic genera of level N for the complete intersection in the cases of c1>, =, or<0, In particular, the values about the Todd genus, , and Ak-genus can be derived from the elliptic genera of level N.
|
| Keywords
Complete intersection, elliptic genera of level N
Todd genus, Ak-genus
|
|
Corresponding Author(s):
Jianbo WANG
|
|
Issue Date: 11 October 2021
|
|
| 1 |
M Atiyah, F Hirzebruch. Spin-manifolds and group actions. In: Haeiger A, Narasimhan R, eds. Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham). Berlin: Springer, 1970, 18–28
https://doi.org/10.1007/978-3-642-49197-9_3
|
| 2 |
O Benoist. Séparation et propriétéde Deligne-Mumford des champs de modules d'intersections complétes lisse. J Lond Math Soc, 2013, 87(2): 138–156
https://doi.org/10.1112/jlms/jds045
|
| 3 |
R Brooks. The A^−genus of complex hypersurfaces and complete intersections. Proc Amer Math Soc, 1983, 87(3): 528–532
|
| 4 |
B Y Chen. Euler characteristics and codimension of complete intersections. Proc Amer Math Soc, 1978, 71(1): 13–14
https://doi.org/10.1090/S0002-9939-1978-0495826-0
|
| 5 |
A Dessai, M Wiemeler. Complete intersections with S1-action. Transform Groups, 2017, 22(2): 295–320
https://doi.org/10.1007/s00031-017-9418-9
|
| 6 |
J Ewing, S Moolgavkar. Euler characteristics of complete intersections. Proc Amer Math Soc, 1976, 56: 390–391
https://doi.org/10.1090/S0002-9939-1976-0399116-4
|
| 7 |
K È Fel'dman. Hirzebruch genus of a manifold supporting a Hamiltonian circle action. Russian Math Surveys, 2001, 56: 978–979
https://doi.org/10.1070/RM2001v056n05ABEH000446
|
| 8 |
R Herrera. Elliptic genera of level N on complex π2 finite manifolds. C R Math Acad Sci Paris, Ser I, 2007, 344(5): 317–320
|
| 9 |
F Hirzebruch. Elliptic genera of level N for complex manifolds. In: Bleuler K, Werner M, eds. Differential Geometrical Methods in Theoretical Physics. Proceedings of the NATO Advanced Research Workshop and the Sixteenth International Conference held in Como, August 24-29, 1987. NATO Adv Sci Inst Ser C Math Phys Sci, 250. Dordrecht: Kluwer Academic Publishers Group, 1988, 37–63
https://doi.org/10.1007/978-94-015-7809-7_3
|
| 10 |
F Hirzebruch. Topological Methods in Algebraic Geometry. Classics in Math. Berlin: Springer-Verlag, 1995
|
| 11 |
F Hirzebruch, T Berger, R Jung. Manifolds and Modular Forms. Aspects of Math, Vol E20. Braunschweig: Friedr Vieweg and Sohn, 1992
https://doi.org/10.1007/978-3-663-14045-0
|
| 12 |
S Kobayashi. Transformation Groups in Differential Geometry. Classics in Math. Berlin: Springer-Verlag, 1995
|
| 13 |
I M Krichever. Obstructions to the existence of S1-actions. Bordism of ramified coverings. Izv Akad Nauk SSSR Ser Mat, 1976, 40: 828-844 (in Russian); Math USSR-Izv, 1976, 10: 783–797
https://doi.org/10.1070/IM1976v010n04ABEH001814
|
| 14 |
I M Krichever. Generalized elliptic genera and Baker-Akhiezer functions. Mat Zametki, 1990, 47: 34-45 (in Russian); Math Notes, 1990, 47: 132–142
https://doi.org/10.1007/BF01156822
|
| 15 |
A S Libgober. Some properties of the signature of complete intersections. Proc Amer Math Soc, 1980, 79(3): 373–375
https://doi.org/10.1090/S0002-9939-1980-0567975-9
|
| 16 |
A S Libgober, J W Wood. Differentiable structures on complete intersections, I. Topology, 1982, 21(4): 469–482
https://doi.org/10.1016/0040-9383(82)90024-6
|
| 17 |
J B Wang, Z W Yu, Y Y Wang. The Hirzebruch genera of complete intersections, arXiv: 2003.02049
|
| 18 |
E Witten. The index of the Dirac operator in loop space. In: Landweber P S, ed. Elliptic Curves and Modular Forms in Algebraic Topology. Lecture Notes in Math, Vol 1326. Berlin: Springer, 1988, 161–181
https://doi.org/10.1007/BFb0078045
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|