Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (5) : 961-986    https://doi.org/10.1007/s11464-021-0927-4
RESEARCH ARTICLE
Symmetric Hermitian decomposability criterion, decomposition, and its applications
Guyan NI(), Bo YANG
Department of Mathematics, National University of Defense Technology, Changsha 410073, China
 Download: PDF(351 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Hermitian tensor is an extension of Hermitian matrices and plays an important role in quantum information research. It is known that every symmetric tensor has a symmetric CP-decomposition. However, symmetric Hermitian tensor is not the case. In this paper, we obtain a necessary and sufficient condition for symmetric Hermitian decomposability of symmetric Hermitian tensors. When a symmetric Hermitian decomposable tensor space is regarded as a linear space over the real number field, we also obtain its dimension formula and basis. Moreover, if the tensor is symmetric Hermitian decomposable, then the symmetric Hermitian decomposition can be obtained by using the symmetric Hermitian basis. In the application of quantum information, the symmetric Hermitian decomposability condition can be used to determine the symmetry separability of symmetric quantum mixed states.

Keywords Hermitian tensor      tensor decomposition      symmetric Hermitian decomposition      quantum mixed states      quantum entanglement     
Corresponding Author(s): Guyan NI   
Issue Date: 29 December 2022
 Cite this article:   
Guyan NI,Bo YANG. Symmetric Hermitian decomposability criterion, decomposition, and its applications[J]. Front. Math. China, 2022, 17(5): 961-986.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0927-4
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I5/961
1 F Bohnet-Waldraff, D Braun, O. Giraud Tensor eigenvalues and entanglement of symmetric states. Phys Rev A, 2016, 94: 042324
https://doi.org/10.1103/PhysRevA.94.042324
2 F Bohnet-Waldraff, D Braun, O. Giraud Entanglement and the truncated moment problem. Phys Rev A, 2017, 96: 032312
https://doi.org/10.1103/PhysRevA.96.032312
3 J Brachat, P Comon, B Mourrain, E. Tsigaridas Symmetric tensor decomposition. Linear Algebra Appl, 2010, 433: 1851–1872
https://doi.org/10.1016/j.laa.2010.06.046
4 P Breiding, N. Vannieuwenhoven A Riemannian trust region method for the canonical tensor rank approximation problem. SIAM J Optim, 2018, 28: 2435–2465
https://doi.org/10.1137/17M114618X
5 K-C Chang, K Pearson, T. Zhang On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416–422
https://doi.org/10.1016/j.jmaa.2008.09.067
6 L Chiantini, G Ottaviani, N. Vannieuwenhoven Effective criteria for specific identifiability of tensors and forms. SIAM J Matrix Anal Appl, 2017, 38: 656–681
https://doi.org/10.1137/16M1090132
7 P Comon, G Golub, B. Lim L -H, Mourrain Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30: 1254–1279
https://doi.org/10.1137/060661569
8 P Comon, L-H Lim, Y Qi, K. Ye Topology of tensor ranks. Adv Math, 2020, 367: 107–128
https://doi.org/10.1016/j.aim.2020.107128
9 H Derksen, S Friedland, L-H Lim, L. Wang Theoretical and computational aspects of entanglement. arXiv: 1705.07160
10 I Domanov, L De. Lathauwer. Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL. SIAM J Matrix Anal Appl, 2015, 36: 1567–1589
https://doi.org/10.1137/140970276
11 M Dressler, J Nie, Z. Yang Separability of Hermitian tensors and PSD decompositions. Linear Algebra Appl, doi.org/10.1080/03081087.2021.1965078
12 T Fu, B Jiang, Z. Li On decompositions and approximations of conjugate partial-symmetric complex tensors. arXiv: 1802.09013
13 F Galuppi, M. Mella Identifiability of homogeneous polynomials and Cremona transformations. J Reine Angew Math, 2019, 757: 279–308
https://doi.org/10.1515/crelle-2017-0043
14 O Giraud, D Braun, D Baguette, T Bastin, J. Martin Tensor representation of spin states. Phys Rev Lett, 2015, 114: 080401
https://doi.org/10.1103/PhysRevLett.114.080401
15 M Horodecki, P. Horodecki Reduction criterion of separability and limits for a class of distillation protocols. Phys Rev A, 1999, 59: 4206–4216
https://doi.org/10.1103/PhysRevA.59.4206
16 B Jiang, Z Li, S. Zhang Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J Matrix Anal Appl, 2016, 37: 381–408
https://doi.org/10.1137/141002256
17 T G Kolda, B W. Bader Tensor decompositions and applications. SIAM Rev, 2009, 51: 455–500
https://doi.org/10.1137/07070111X
18 J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl, 1977, 18: 95–138
https://doi.org/10.1016/0024-3795(77)90069-6
19 J M. Landsberg Tensors: Geometry and Applications. Grad Stud Math, Vol 128. Providence: Amer Math Soc, 2012
20 J M Landsberg, Z. Teitler On the ranks and border ranks of symmetric tensors. Found Comput Math, 2010, 10: 339–366
https://doi.org/10.1007/s10208-009-9055-3
21 L De. Lathauwer. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J Matrix Anal Appl, 2006, 28: 642–666
https://doi.org/10.1137/040608830
22 L De Lathauwer, B De Moor, J. Vandewalle Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J Matrix Anal Appl, 2004, 26: 295–327
https://doi.org/10.1137/S089547980139786X
23 Y Li, G. Ni Separability discrimination and decomposition of m-partite quantum mixed states. Phys Rev A, 2020, 102: 012402
https://doi.org/10.1103/PhysRevA.102.012402
24 Z Li, Y Nakatsukasa, T Soma, A. Uschmajew On orthogonal tensors and best rank-one approximation ratio. SIAM J Matrix Anal Appl, 2018, 39: 400–425
https://doi.org/10.1137/17M1144349
25 L-H. Lim Tensors and hypermatrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Discrete Math Appl (Boca Raton). Boca Raton: CRC Press, 2014, 15-1–15-30
26 N Milazzo, D Braun, O. Giraud Truncated moment sequences and a solution to the channel separability problem. arXiv: 2006.15003
27 G. Ni Hermitian tensor and quantum mixed state. arXiv: 1902.02640
28 G Ni, L Qi, M. Bai Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J Matrix Anal Appl, 2014, 35: 73–87
https://doi.org/10.1137/120892891
29 J. Nie Generating polynomials and symmetric tensor decompositions. Found Comput Math, 2017, 17: 423–465
https://doi.org/10.1007/s10208-015-9291-7
30 J. Nie Low rank symmetric tensor approximations. SIAM J Matrix Anal Appl, 2017, 38: 1517–1540
https://doi.org/10.1137/16M1107528
31 J Nie, Z. Yang Hermitian tensor decompositions. SIAM J Matrix Anal Appl, 2020, 41(3): 1115–1144
https://doi.org/10.1137/19M1306889
32 J Nie, X. Zhang Positive maps and separable matrices. SIAM J Optim, 2018, 26(2): 1236-1256
https://doi.org/10.1137/15M1018514
33 L Qi, C Xu, Y. Xu Nonnegative tensor factorization, completely positive tensors and a hierarchical elimination algorithm. SIAM J Matrix Anal Appl, 2014, 35: 1227–1241
https://doi.org/10.1137/13092232X
34 L Qi, G Zhang, D Braun, F Bohnet-Waldraff, O. Giraud Regularly decomposable tensors and classical spin states. Commun Math Sci, 2017, 15: 1651–1665
https://doi.org/10.4310/CMS.2017.v15.n6.a8
35 L Qi, G Zhang, G. Ni How entangled can a multi-party system possibly be? Phys Lett A, 2018, 382: 1465–1471
https://doi.org/10.1016/j.physleta.2018.04.007
36 N Sidiropoulos, R. Bro On the uniqueness of multilinear decomposition of N-way arrays. J Chemometrics, 2000, 14: 229–239
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
37 L Sorber, M Van Barel, L De. Lathauwer. Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) terms, and a new generalization. SIAM J Optim, 2013, 23: 695–720
https://doi.org/10.1137/120868323
38 T-C Wei, P M. Goldbart Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A, 2003, 68: 042307
https://doi.org/10.1103/PhysRevA.68.042307
39 A Zhou, J. Fan Completely positive tensor recovery with minimal nuclear value. Comput Optim Appl, 2018, 70: 419–441
https://doi.org/10.1007/s10589-018-0003-5
[1] Lubin Cui, Minghui Li. Jordan canonical form of three-way tensor with multilinear rank (4,4,3)[J]. Front. Math. China, 2019, 14(2): 281-300.
[2] QI Liqun, SUN Wenyu, WANG Yiju. Numerical multilinear algebra and its applications[J]. Front. Math. China, 2007, 2(4): 501-526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed