|
|
|
Fredholm theory for pseudoholomorphic curves with brake symmetry |
Beijia ZHOU, Chaofeng ZHU( ) |
| Chern Institute of Mathematics, Nankai University and LPMC, Tianjin 300071, China |
|
|
|
|
Abstract We study the pseudoholomorphic curves with brake symmetry in symplectization of a closed contact manifold. We introduce the pseudo-holomorphic curves with brake symmetry and the corresponding moduli space. Then we get the virtual dimension of the moduli space.
|
| Keywords
Pseudoholomorphic curve
brake symmetry
moduli space
virtual dimension
|
|
Corresponding Author(s):
Chaofeng ZHU
|
|
Issue Date: 04 January 2023
|
|
| 1 |
W Abikoff. The Real Analytic Theory of Teichmüller Space. Lecture Notes in Math, Vol 820. Berlin: Springer-Verlag, 1980
|
| 2 |
F Bourgeois. A Morse-Bott Approach to Contact Homology. Ph D Thesis. Stanford: Stanford Univ, 2002
|
| 3 |
F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder. Compactness results in symplectic field theory. Geom Topol, 2003, 7: 799- 888
|
| 4 |
F Bourgeois, A Oancea. An exact sequence for contact and symplectic homology. Invent Math, 2009, 175: 611- 680
|
| 5 |
S E Cappell, R Lee, E Y Miller. On the Maslov index. Comm Pure Appl Math, 1994, 47 (2): 121- 186
|
| 6 |
D Dragnev. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm Pure Appl Math, 2004, 57 (6): 726- 763
|
| 7 |
Y Eliashberg, A Givental, H Hofer. Introduction to symplectic field theory. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V, eds. Visions in Mathematics: GAFA 2000 Special Volume, Part II. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 560- 673
|
| 8 |
U Frauenfelder, J Kang. Real holomorphic curves and invariant global surfaces of section. Proc Lond Math Soc, 2016, 112 (3): 477- 511
|
| 9 |
H Geiges. An Introduction to Contact Topology. Cambridge: Cambridge Univ Press, 2008
|
| 10 |
M Gromov. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307- 347
|
| 11 |
H Hofer. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent Math, 1993, 114: 515- 563
|
| 12 |
H Hofer, K Wysocki, E Zehnder. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. In: Eliashberg Y, Milman V, Polterovich L, Schoen R, eds. Geometries in Interaction: GAFA Special Issue in Honor of Mikhail Gromov. Basel: Birkhäuser, 1995, 270- 328
|
| 13 |
H Hofer, K Wysocki, E Zehnder. Properties of pseudoholomorphic curves in symplectisations. I: Asymptotics. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13 (3): 337- 379
|
| 14 |
H Hofer, K Wysocki, E Zehnder. Properties of pseudoholomorphic curves in symplectisations. III. Fredholm Theory. In: Topics in Nonlinear Analysis. Basel: Birkhäuser, 1999, 381- 475
|
| 15 |
J H Hubbard. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca: Matrix Editions, 2016
|
| 16 |
J Kim, S Kim, M Kwon. Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Ergodic Theory Dynam Systems, 2021,
https://doi.org/10.1017/etds.2020.144
|
| 17 |
C Liu, D Zhang. Seifert conjecture in the even convex case. Comm Pure Appl Math, 2014, 67 (10): 1563- 1604
|
| 18 |
Y Long. Index Theory for Symplectic Paths with Applications. Progr Math , Vol 207. Basel: Birkhäuser, 2002
|
| 19 |
Y Long, D Zhang, C Zhu. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203 (2): 568- 635
|
| 20 |
D McDuff, D Salamon. J-Holomorphic Curves and Symplectic Topology. 2nd ed. Providence: Amer Math Soc, 2012
|
| 21 |
D McDuff, D Salamon. Introduction to Symplectic Topology. 3rd ed. Oxford: Oxford Univ Press, 2017
|
| 22 |
E Mora. Pseudoholomorphic Cylinders in Symplectisations. Ph D Thesis. New York: New York Univ, 2003
|
| 23 |
S Natanzon. Moduli of real algebraic surfaces, and their superanalogues, differentials, spinors, and Jacobians of real curves Uspekhi Mat Nauk, 1999, 54 (6): 3- 60
|
| 24 |
A Papadopoulos, ed . Handbook of Teichmüller Theory, Vol 1. IRMA Lectures in Mathematics and Theoretical Physics, Vol 11. Zürich: European Math Soc, 2007
|
| 25 |
J Robbin, D Salamon. The Maslov index for paths. Topology, 1993, 32 (4): 827- 844
|
| 26 |
M Schwarz. Cohomology operation from S1-cobordisms in Floer homology. Ph D Thesis. Zürich: ETH–Zürich, 1995
|
| 27 |
H Seifert. Periodische bewegungen mechanischer systeme. Math Z, 1948, 51: 197- 216
|
| 28 |
R Siefring. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm Pure Appl Math, 2008, 61: 1631- 1684
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|