Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (6) : 1201-1234    https://doi.org/10.1007/s11464-021-0935-4
RESEARCH ARTICLE
Fredholm theory for pseudoholomorphic curves with brake symmetry
Beijia ZHOU, Chaofeng ZHU()
Chern Institute of Mathematics, Nankai University and LPMC, Tianjin 300071, China
 Download: PDF(386 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the pseudoholomorphic curves with brake symmetry in symplectization of a closed contact manifold. We introduce the pseudo-holomorphic curves with brake symmetry and the corresponding moduli space. Then we get the virtual dimension of the moduli space.

Keywords Pseudoholomorphic curve      brake symmetry      moduli space      virtual dimension     
Corresponding Author(s): Chaofeng ZHU   
Issue Date: 04 January 2023
 Cite this article:   
Beijia ZHOU,Chaofeng ZHU. Fredholm theory for pseudoholomorphic curves with brake symmetry[J]. Front. Math. China, 2022, 17(6): 1201-1234.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0935-4
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I6/1201
1 W Abikoff. The Real Analytic Theory of Teichmüller Space. Lecture Notes in Math, Vol 820. Berlin: Springer-Verlag, 1980
2 F Bourgeois. A Morse-Bott Approach to Contact Homology. Ph D Thesis. Stanford: Stanford Univ, 2002
3 F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder. Compactness results in symplectic field theory. Geom Topol, 2003, 7: 799- 888
4 F Bourgeois, A Oancea. An exact sequence for contact and symplectic homology. Invent Math, 2009, 175: 611- 680
5 S E Cappell, R Lee, E Y Miller. On the Maslov index. Comm Pure Appl Math, 1994, 47 (2): 121- 186
6 D Dragnev. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm Pure Appl Math, 2004, 57 (6): 726- 763
7 Y Eliashberg, A Givental, H Hofer. Introduction to symplectic field theory. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V, eds. Visions in Mathematics: GAFA 2000 Special Volume, Part II. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 560- 673
8 U Frauenfelder, J Kang. Real holomorphic curves and invariant global surfaces of section. Proc Lond Math Soc, 2016, 112 (3): 477- 511
9 H Geiges. An Introduction to Contact Topology. Cambridge: Cambridge Univ Press, 2008
10 M Gromov. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307- 347
11 H Hofer. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent Math, 1993, 114: 515- 563
12 H Hofer, K Wysocki, E Zehnder. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. In: Eliashberg Y, Milman V, Polterovich L, Schoen R, eds. Geometries in Interaction: GAFA Special Issue in Honor of Mikhail Gromov. Basel: Birkhäuser, 1995, 270- 328
13 H Hofer, K Wysocki, E Zehnder. Properties of pseudoholomorphic curves in symplectisations. I: Asymptotics. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13 (3): 337- 379
14 H Hofer, K Wysocki, E Zehnder. Properties of pseudoholomorphic curves in symplectisations. III. Fredholm Theory. In: Topics in Nonlinear Analysis. Basel: Birkhäuser, 1999, 381- 475
15 J H Hubbard. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca: Matrix Editions, 2016
16 J Kim, S Kim, M Kwon. Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Ergodic Theory Dynam Systems, 2021,
https://doi.org/10.1017/etds.2020.144
17 C Liu, D Zhang. Seifert conjecture in the even convex case. Comm Pure Appl Math, 2014, 67 (10): 1563- 1604
18 Y Long. Index Theory for Symplectic Paths with Applications. Progr Math , Vol 207. Basel: Birkhäuser, 2002
19 Y Long, D Zhang, C Zhu. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203 (2): 568- 635
20 D McDuff, D Salamon. J-Holomorphic Curves and Symplectic Topology. 2nd ed. Providence: Amer Math Soc, 2012
21 D McDuff, D Salamon. Introduction to Symplectic Topology. 3rd ed. Oxford: Oxford Univ Press, 2017
22 E Mora. Pseudoholomorphic Cylinders in Symplectisations. Ph D Thesis. New York: New York Univ, 2003
23 S Natanzon. Moduli of real algebraic surfaces, and their superanalogues, differentials, spinors, and Jacobians of real curves Uspekhi Mat Nauk, 1999, 54 (6): 3- 60
24 A Papadopoulos, ed . Handbook of Teichmüller Theory, Vol 1. IRMA Lectures in Mathematics and Theoretical Physics, Vol 11. Zürich: European Math Soc, 2007
25 J Robbin, D Salamon. The Maslov index for paths. Topology, 1993, 32 (4): 827- 844
26 M Schwarz. Cohomology operation from S1-cobordisms in Floer homology. Ph D Thesis. Zürich: ETH–Zürich, 1995
27 H Seifert. Periodische bewegungen mechanischer systeme. Math Z, 1948, 51: 197- 216
28 R Siefring. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm Pure Appl Math, 2008, 61: 1631- 1684
[1] Wilderich TUSCHMANN. Spaces and moduli spaces of Riemannian metrics[J]. Front. Math. China, 2016, 11(5): 1335-1343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed