Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (6) : 1181-1200    https://doi.org/10.1007/s11464-021-0983-9
RESEARCH ARTICLE
Fractional Fourier transform on R2 and an application
Yue ZHANG, Wenjuan LI()
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(591 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We focus on the Lp(R2) theory of the fractional Fourier transform (FRFT) for 1 ≤ p ≤ 2. In L1(R2), we mainly study the properties of the FRFT via introducing the two-parameter chirp operator. In order to get the point-wise convergence for the inverse FRFT, we introduce the fractional convolution and establish the corresponding approximate identities. Then the well-defined inverse FRFT is given via approximation by suitable means, such as fractional Gauss means and Able means. Furthermore, if the signal Fα,βf is received, we give the process of recovering the original signal f with MATLAB. In L2(R2), the general Plancherel theorem, direct sum decomposition, and the general Heisenberg inequality for the FRFT are obtained.

Keywords Fractional Fourier transform (FRFT)      inverse fractional Fourier transform      signal recovery      direct sum decomposition      general Heisenberg inequality     
Corresponding Author(s): Wenjuan LI   
Issue Date: 04 January 2023
 Cite this article:   
Yue ZHANG,Wenjuan LI. Fractional Fourier transform on R2 and an application[J]. Front. Math. China, 2022, 17(6): 1181-1200.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0983-9
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I6/1181
1 W Chen , Z W Fu , L Grafakos , Y Wu . Fractional Fourier transforms on Lp and applications. Appl Comput Harmon Anal, 2021, 55: 71- 96
2 Y Ding . Foundations of Modern Analysis. 2nd ed. Beijing: Beijing Normal University Publishers, 2013 (Chinese)
3 F H Kerr . A distributional approach to Namias’s fractional Fourier transforms. Proc Roy Soc Edinburgh Sect A, 1988, 108: 133- 143
4 S Liu , T Shan , R Tao , Y Zhang , G Zhang , F Zhang , Y Wang . Sparse discrete fractional Fourier transform and its applications. IEEE Trans Signal Process, 2014, 62: 6582- 6595
5 A C Mcbride , F H Kerr . On Namias’s fractional Fourier transform. IMA J Appl Math, 1987, 39: 159- 175
6 V Namias . The fractional order Fourier transform and its application to quantum mechanics. IMA J Appl Math, 1980, 25: 241- 265
7 A Sahin , M Ozaktas , D Mendlovic . Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters. Applied Optics, 1998, 37: 2130- 2141
8 I S Yetik , A Nehorai . Beamforming using the fractional Fourier transform. IEEE Trans Signal Process, 2003, 51: 1663- 1668
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed