Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (6) : 1083-1088    https://doi.org/10.1007/s11464-021-0984-8
RESEARCH ARTICLE
Nonsolvable groups whose irreducible character degrees have special 2-parts
Yang LIU()
School of Mathematical Science, Tianjin Normal University, Tianjin 300387, China
 Download: PDF(251 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let G be a nonsolvable group and Irr(G) the set of irreducible complex characters of G. We consider the nonsolvable groups whose character degrees have special 2-parts and prove that if χ(1)2 = 1 or |G|2 for every χ ∈ Irr(G), then there exists a minimal normal subgroup N of G such that N ≅ PSL(2, 2n) and G/N is an odd order group.

Keywords Character degree      nonsolvable group     
Corresponding Author(s): Yang LIU   
Issue Date: 04 January 2023
 Cite this article:   
Yang LIU. Nonsolvable groups whose irreducible character degrees have special 2-parts[J]. Front. Math. China, 2022, 17(6): 1083-1088.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0984-8
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I6/1083
1 R W Carter . Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. New York: Wiley, 1985
2 J H Conway , R T Curtis , S P Norton , R A Parker , R A Wilson . Atlas of Finite Groups. London: Oxford Univ Press, 1984
3 C W Curtis . The Steinberg character of a finite group with a (B, N)-pair. J Algebra, 1966, 4: 433- 441
4 J Humphreys . Defect groups for finite groups of Lie type. Math Z, 1971, 119: 149- 152
5 M L Lewis , G Navarro , P H Tiep , H P Tong-viet . p-parts of character degrees. J Lond Math Soc (2), 2015, 92: 483- 497
6 M L Lewis , G Navarro , T R Wolf . p-parts of character degrees and the index of the Fitting subgroup. J Algebra, 2014, 411: 182- 190
7 D F Liang , G H Qian , W J Shi . Finite groups whose all irreducible character degrees are Hall-numbers. J Algebra, 2007, 307: 695- 703
8 G H Qian . A note on p-parts of character degrees. Bull Lond Math Soc, 2018, 50: 663- 666
9 G H Qian , Y Yang . Nonsolvable groups with no prime dividing three character degrees. J Algebra, 2015, 436: 145- 160
10 W A Simpson , J S Frame . The character tables of SL(3, q), SU(3, q2), PSL(3, q), PSU(3, q2). Canad J Math, 1973, 25: 486- 494
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed