Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (3) : 373-435    https://doi.org/10.1007/s11464-022-1015-0
SURVEY ARTICLE
Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces
Pengtao LI1(), Wenchang SUN2
1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China
2. School of Mathematical Sciences, Nankai University, Tianjin 300000, China
 Download: PDF(514 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this survey, we give a neat summary of the applications of the multi-resolution analysis to the studies of Besov-Q type spaces B ˙ p,q γ1,γ2(n) and Triebel-Lizorkin-Q type spaces B˙p, qγ1, γ2( n). We will state briefly the recent progress on the wavelet characterizations, the boundedness of Calderón-Zygmund operators, the boundary value problem of B ˙ p,q γ1,γ2(n) and F ˙ p,q γ1,γ2(n). We also present the recent developments on the well-posedness of fluid equations with small data in B˙p, qγ1, γ2( n) and F ˙p ,qγ1,γ2( n).

Keywords Multiresolution analysis      regular wavelet      Besov-Q type spaces      Triebel-Lizorkin-Q type spaces     
Corresponding Author(s): Pengtao LI   
Issue Date: 25 May 2022
 Cite this article:   
Pengtao LI,Wenchang SUN. Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces[J]. Front. Math. China, 2022, 17(3): 373-435.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-022-1015-0
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I3/373
1 G Bao, H. Wulan QK spaces of several real variables. Abstr Appl Anal, 2014, 2014: 1–14
https://doi.org/10.1155/2014/931937
2 G Beylkin, R Coifman, V. Rokhlin Fast wavelet transforms and numerical algorithms I. Commun Pure Appl Math, 1991, 44: 141–183
https://doi.org/10.1002/cpa.3160440202
3 H-Q. Bui Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J Funct Anal, 1984, 55: 39–62
https://doi.org/10.1016/0022-1236(84)90017-X
4 H-Q. Bui Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz. Hiroshima Math J, 1979, 9: 245–295
https://doi.org/10.32917/hmj/1206135206
5 M. Cannone A generalization of a theorem by Kato on Navier-Stokes equations. Rev Math Ibero, 1997, 13: 673–97
https://doi.org/10.4171/RMI/229
6 M. Cannone Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in: S. Friedlander, D. Serre (Eds.), Handbook of Mathematical Fluid Dynamics, Elsevier, 2004, 3: 161–44
https://doi.org/10.1016/S1874-5792(05)80006-0
7 C. Chui An Introduction on Wavelets, 1992, New York: Academic Press
https://doi.org/10.1063/1.4823126
8 R Coifman, P Jones, S. Semmes Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J Amer Math Soc, 1989, 2: 553–564
https://doi.org/10.1090/S0894-0347-1989-0986825-6
9 L Cui, Q. Yang On the generalized Morrey spaces. Siberian Math J, 2005, 46: 133–141
https://doi.org/10.1007/s11202-005-0014-1
10 G Dafni, J. Xiao Some new tent spaces and duality theorem for fractional Carleson measures and Qα(ℝ n). J Funct Anal, 2004, 208: 377–422
https://doi.org/10.1016/S0022-1236(03)00181-2
11 G Dafni, J. Xiao The dyadic structure and atomic decomposition of Q spaces in several real variables. Tohoku Math J, 2005, 57: 119–145
https://doi.org/10.2748/tmj/1113234836
12 B. Dahlberg Poisson semigroups and singular integrals. Proc Amer Math Soc, 1986, 97: 41–48
https://doi.org/10.1090/S0002-9939-1986-0831384-0
13 I. Daubechies Ten Lectures on Wavelets. Siam, 1992, 61
https://doi.org/10.1137/1.9781611970104
14 G. David Opérateurs intégraux singuliers sur certains courbes du plan complexe. Ann Sci École Norm Sup, 1984, 17: 157–189
https://doi.org/10.24033/asens.1469
15 G. David Wavelets, Calderón-Zygmund operators, and singular integrals on curves and surfaces. Proceedings of the Special Year on Harmonic Analysis at Nankai Institute of Mathematics, Tanjin, China, Lecture Notes in Mathematics, Springer-Verlag, Berlin
16 G David, J-L. Journé A boundedness criterion for generalized Calderón-Zygmund operators. Ann Math, 1984, 120: 371–397
https://doi.org/10.2307/2006946
17 G David, J-L Journé, S. Semmes Opérateurs de Calderón-Zygmund, fonctions paraaccr étives et interpolation. Rev Math Iberoame, 1985, 1: 1–56
https://doi.org/10.4171/RMI/17
18 G David, J-L Journé, S. Semmes Opérateurs de Caldéron-Zygmund sur les espaces de nature homogène, preprint
19 D Deng, L Yan, Q. Yang Blocking analysis and T (1) theorem. Sci China Math, 1998, 41: 801–808
https://doi.org/10.1007/BF02871663
20 R Edwards, G. Gaudry Littlewood-Paley and multiplier Theory. Springer-Verlag, 1977, Berlin-Heigelberg, New York
https://doi.org/10.1007/978-3-642-66366-6
21 M Essén, S Janson, L Peng, J. Xiao Q spaces of several real variables. Indiana Univ Math J, 2000, 49: 575–615
https://doi.org/10.1512/iumj.2000.49.1732
22 E Fabes, U. Neri Characterization of temperatures with initial data in BMO. Duke Math J, 1975, 42: 725–734
https://doi.org/10.1215/S0012-7094-75-04260-X
23 E Fabes, U. Neri Dirichlet problem in Lipschitz domains with BMO data. Proc Amer Math Soc, 1980, 78: 33–39
https://doi.org/10.1090/S0002-9939-1980-0548079-8
24 E Fabes, R Johnson, U. Neri Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ Math J, 1976, 25: 159–170
https://doi.org/10.1512/iumj.1976.25.25012
25 T. Flett Temperatures, Bessel potentials and Lipschitz spaces. Proc London Math Soc, 1971, 22: 385–451
https://doi.org/10.1112/plms/s3-22.3.385
26 M Frazier, B Jawerth, G. Weiss Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg. Conf. Ser. Math., vol. 79, Amer. Math. Soc., Providence, RI, 1991
https://doi.org/10.1090/cbms/079
27 M Frazier, Y Han, B Jawerth, G. Weiss The T(1) theorem for Triebel-Lizorkin spaces. Proc. Conf. Harmonic Analysis and PDE, El Escorial, 1987, J. Garcia-Cuerva et. al. eds, Lecture Notes in Math., 1384, Springer-Verlag, 168–181
https://doi.org/10.1007/BFb0086801
28 M Frazier, R Torres, G. Weiss The boundedness of Calderón-Zygmund Operators on the spaces F ˙p αq. Revista Mat Ibero, 1988, 4: 41–72
https://doi.org/10.4171/RMI/63
29 P Germain, N Pavlović, G. Staffilani Regularity of solutions to the Naiver.Stokes equations evolving from small data in BMO−1. Int Math Res Not, 2007, 2007
https://doi.org/10.1093/imrn/rnm087
30 Y Giga, T. Miyakawa Navier-Stokes flow in ℝ3 with measures as initial vorticity and Morry spaces. Comm Partial Differ Equ, 1989, 14: 577–618
https://doi.org/10.1080/03605308908820621
31 F Han, P. Li Characterizations for a class of Q-type spaces of several real variables. Adv Math (China), 2020, 49: 195–214
32 F Han, P. Li Harmonic extension of Qk type spaces via regular wavelets. Complex Vair Ellipt Equ, 2020, 65: 2008–2025
https://doi.org/10.1080/17476933.2019.1684484
33 F Han, P. Li Extension of Besov-Q type spaces via convolution operators with applications. Complex Anal Oper Theory, 2020, 14
https://doi.org/10.1007/s11785-020-01002-5
34 Y Han, S. Hofmann T1 theorems for Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 1993, 337: 839–853
https://doi.org/10.1090/S0002-9947-1993-1097168-4
35 Y Han, B Jawerth, M Taibleson, G. Weiss Littlewood-Paley theory and ε-families of operators. Coll Math, 1990, 60–61: 321–359
https://doi.org/10.4064/cm-60-61-1-321-359
36 T. Kato Strong Lp-solutions of the Navier-Stokes in ℝn with applications to weak solutions. Math Z, 1984, 187: 471–480
https://doi.org/10.1007/BF01174182
37 T Kato, H. Fujita On the non-stationary Navier-Stokes system. Rend Semin Mat Univ Padova, 1962, 30: 243–260
38 H Koch, D. Tataru Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157: 22–35
https://doi.org/10.1006/aima.2000.1937
39 K Lau, L. Yan Wavelet decomposition of Caldern-Zygmund operators on function spaces. J Australian Math Soc, 2004, 77: 29–46
https://doi.org/10.1017/S1446788700010132
40 P. Lemarie Continuité sur les espaces de Besov des opérateurs définis par des intégrales singuliéres. Annales de línstitut Fourier, 1985, 35: 175–187
https://doi.org/10.5802/aif.1033
41 P Li, H Liu, L Peng, Q. Yang Pseudo-annular decomposition and approximate rate of Calderon-Zygmund operators on Heisenberg group. Inter J Wavelets Multi Inform Proc, 2015, 13, 1550001
https://doi.org/10.1142/S0219691315500010
42 P Li, L. Peng Poisson semigroup characterization and the trace theorem of a class of fractional mean oscillation spaces. Math Methods Appl Sci, 2018, 41: 3463–3475
https://doi.org/10.1002/mma.4838
43 P Li, J Xiao, Q. Yang Global mild solutions of modified Navier-Stokes equations with small initial data in critical Besov-Q spaces. Electronic J Differ Equ, 2014, 2014: 1–37
44 P Li, Q. Yang Bilinear estimate on tent type spaces with application to the wellposedness of fluid equations. Math Meth Appl Sci, 2016, 39: 4099–4128
https://doi.org/10.1002/mma.3850
45 P Li, Q. Yang Wavelets and the well-posedness of incompressible magneto-hydrodynamic equations in Besov type Q-spaces. J Math Anal Appl, 2013, 405: 661–686
https://doi.org/10.1016/j.jmaa.2013.04.035
46 P Li, Q. Yang Well-posedness of quasi-geostrophic equations with data in Besov-Q spaces. Nonlinear Analysis TMA, 2014, 94: 243–258
https://doi.org/10.1016/j.na.2013.08.021
47 P Li, Q Yang, K. Zhao Regular wavelets and Triebel-Lizorkin type oscillation spaces. Math Meth Appl Sci, 2017, 40: 6684–6701
https://doi.org/10.1002/mma.4482
48 P Li, Z. Zhai Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J Funct Anal, 2010, 259: 2457–2519
https://doi.org/10.1016/j.jfa.2010.07.013
49 P Li, Z. Zhai Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwanese J Math, 2012, 16: 2107–2132
https://doi.org/10.11650/twjm/1500406843
50 Y Liang, Y Sawano, T Ullrich, D Yang, W. Yuan New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets J Fourier Anal Appl, 2012, 18: 1067–1111
https://doi.org/10.1007/s00041-012-9234-5
51 C Lin, Q. Yang Semigroup characterization of Besov type Morrey spaces and wellposedness of generalized Navier-Stokes equations. J Differ Equ, 2013, 254: 804–846
https://doi.org/10.1016/j.jde.2012.09.017
52 J. Lions Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Dunod/Gauthier. Villars, 1969, Paris
53 H Liu, Y. Liu Convergence of cascade sequence on the Heisenberg group. Proc Amer Math Soc, 2006, 134: 1413–1423
https://doi.org/10.1090/S0002-9939-05-08108-6
54 S. Mallat A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 7: 674–693
https://doi.org/10.1109/34.192463
55 Y. Meyer Ondelettes et Opérateurs, I et II. Hermann, 1991–1992, Paris
56 Y Meyer, Q. Yang Continuity of Calderón-Zygmund operators on Besov or Triebel-Lizorkin spaces. Anal Appl (Singap.), 2008, 6: 51–81
https://doi.org/10.1142/S0219530508001055
57 C Miao, B Yuan, B. Zhang Well-posedness for the incompressible magneto-hydrodynamic system. Math Methods Appl Sci, 2007, 30: 961–976
https://doi.org/10.1002/mma.820
58 A Nicolau, J. Xiao Bounded functions in Möbius invariant Dirichlet spaces. J Funct Anal, 1997, 150: 383–425
https://doi.org/10.1006/jfan.1997.3114
59 J. Peetre New thoughts on Besov spaces. Duke Univ. Math. Ser., 1976, Duke Univ Press, Durham
60 F Ricci, M. Taibleson Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Annali Della Scuola Normale Superiore di pisa Class di Scienze, 1983, 10: 1–54
61 E M. Stein Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970, Princeton, N. J
https://doi.org/10.1515/9781400883882
62 E M. Stein Singular integrals, harmonic functions, and differentiability properties of functions of several variables. Proc Symp Pure Math, 1967, 10: 316–335
https://doi.org/10.1090/pspum/010/0482394
63 E. Stein M. Harmonic analysis–Real variable methods, orthogonality, and integrals. Princeton University Press, 1993
64 E M Stein, G. Weiss Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, 1971, Princeton, NJ
https://doi.org/10.1515/9781400883899
65 R. Strichartz Bounded mean oscillation and Sobolev spaces. Indiana Univ Math J, 1980, 29: 539–558
https://doi.org/10.1512/iumj.1980.29.29041
66 R. Strichartz Traces of BMO-Sobolev spaces. Proc Amer Math Soc, 1981, 83: 509–513
https://doi.org/10.1090/S0002-9939-1981-0627680-8
67 M Taibleson, G. Weiss The molecular characterization of certain Hardy spaces. Asterisque, 1980, 77: 67–151
68 Y Wang, J. Xiao Homogeneous Campanato-Sobolev classes. Appl Comput Harmon Anal, 2014, 39: 214–247
https://doi.org/10.1016/j.acha.2014.09.002
69 J. Wu Generalized MHD equations. J Differ Equ, 2003, 195: 284–312
https://doi.org/10.1016/j.jde.2003.07.007
70 J. Wu The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Differ Equ, 2004, 1: 381–400
https://doi.org/10.4310/DPDE.2004.v1.n4.a2
71 J. Wu Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2005, 263: 803–831
https://doi.org/10.1007/s00220-005-1483-6
72 J. Wu Regularity criteria for the generalized MHD equations. Comm Partial Differ Equ, 2008, 33: 285–306
https://doi.org/10.1080/03605300701382530
73 Z Wu, C. Xie Decomposition theorems for Qp spaces. Ark Mat, 2002, 40: 383–401
https://doi.org/10.1007/BF02384542
74 J. Xiao Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn Partial Differ Equ, 2007, 2: 227–245
https://doi.org/10.4310/DPDE.2007.v4.n3.a2
75 D Yang, W. Yuan A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces. J Funct Anal, 2008, 255: 2760–2809
https://doi.org/10.1016/j.jfa.2008.09.005
76 D Yang, W. Yuan Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal, 2010, 73: 3805–3820
https://doi.org/10.1016/j.na.2010.08.006
77 Q. Yang Fast algorithms for Calderón-Zygmund singular integral operators. Appl Comput Harmonic Anal, 1996, 3: 120–126
https://doi.org/10.1006/acha.1996.0011
78 Q. Yang Wavelet and Distribution. Chinese edition, 2002, Beijing Science and Technology Press
79 Q Yang, P. Li Regular orthogonal basis on Heisenberg group and application to function spaces. Math Meth Appl Sci, 2015, 38: 3163–3182
https://doi.org/10.1002/mma.3288
80 Q Yang, P. Li Regular wavelets, heat semigroup and application to the magnetohydrodynamic equations with data in critical Triebel-Lizorkin type oscillation spaces. Taiwanese J Math, 2016, 20: 1335–1376
https://doi.org/10.11650/tjm.20.2016.7295
81 Q Yang, T Qian, P. Li Spaces of harmonic functions with boundary values in Qp,qα. Applicable Analysis, 2014, 93: 2498–2518
https://doi.org/10.1080/00036811.2014.959441
82 Q Yang, L Yan, D. Deng On Hörmander condition. Chinese Science Bulletin, 1997, 42: 1341–1345
https://doi.org/10.1007/BF02882861
83 K. Yosida, Functional Analysis, 1965, Springer-Verlag, Berlin
https://doi.org/10.1007/978-3-642-52814-9
84 W Yuan, W Sickel, D. Yang Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2010, 2005, Springer Heidelberg Dordrecht London New York, 2010
https://doi.org/10.1007/978-3-642-14606-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed