Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (6) : 1037-1049    https://doi.org/10.1007/s11464-022-1033-y
RESEARCH ARTICLE
Nonabelian omni-Lie algebroids
Yanhui BI, Hongtao FAN(), Danlu CHEN
School of Mathematics and Information Sciences, Nanchang Hangkong University, Nanchang 330063, China
 Download: PDF(527 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we study the structure of nonabelian omni-Lie algebroids. Firstly, taking Lie algebroid (E,[ ,]E, ρE) as the starting point, a nonabelian omni-Lie algebroid is defined on direct sum bundle D EJE, where D E and JE are, respectively, the gauge Lie algebroid and the jet bundle of vector bundle E, and study its properties. Furthermore, it is concluded that the nonabelian omni-Lie algebroid is a trivial deformation of the omni-Lie algebroid, and the nonabelian omni-Lie algebroid is a matched pair of Leibniz algebroids.

Keywords Nonabelian omni-Lie algebroid      omni-Lie algebroid      trivial deformation      matched pair of Leibniz algebroids     
Corresponding Author(s): Hongtao FAN   
Online First Date: 03 January 2023    Issue Date: 04 January 2023
 Cite this article:   
Yanhui BI,Hongtao FAN,Danlu CHEN. Nonabelian omni-Lie algebroids[J]. Front. Math. China, 2022, 17(6): 1037-1049.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-022-1033-y
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I6/1037
1 A L Agore, G Militaru. Unified products for Leibniz algebras. Linear Algebra Appl 2013; 439(9): 2609–2633
2 H BursztynM Crainic. Dirac structures, momentum maps, and quasi-Poisson manifolds. In: The Breadth of Symplectic and Poisson Geometry, Progr Math, No 232. Boston, MA: Birkhäuser Boston, 2005, 1−40
3 J F Cariñena, J Grabowski, G Marmo. Courant algebroid and Lie bialgebroid contractions. J Phys A 2004; 37(19): 5189–5202
4 Z Chen, Z J Liu. Omni-Lie algebroids. J Geom Phys 2010; 60(5): 799–808
5 Z Chen, Z J Liu, Y H Sheng. E-Courant algebroids. Int Math Res Not 2010; 22(8): 1163–1185
6 Z Chen, Z J Liu, Y H Sheng. Dirac structures of omni-Lie algebroids. Internat J Math 2011; 22: 1163–1185
7 L G He. Introduction to Symplectic Geometry and Poisson Geometry. Beijing: Capital Normal University Press, 2001, 206−216 (in Chinese)
8 R Ibañez, B Lopez, J C Marrero. et al.. Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class. C R Acad Sci Paris Sér I Math 2001; 333(9): 861–866
9 Y Kosmann-Schwarzbach. Nijenhuis structures on Courant algebroids. Bull Braz Math Soc (N S) 2011; 42(4): 625–649
10 H L LangY H ShengX M Xu. Nonabelian omni-Lie algebras. In: Geometry of jets and fields, Banach Center Publ, No 110. Warsaw: Polish Acid Sci Inst Math, 2016, 110: 167−176
11 Z J Liu, A Weinstein, P Xu. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574
12 J L Loday. Une version non commutative des algèbras de Lie: les algèbras de Leibniz. In: Prépubl Inst Rech Math Av, No 41. Strasbourg: Univ Louis Pasteur, 1993, 127−151 (in French)
13 A Nijenhuis, R Richardson. Deformations of Lie algebra structures. J Math Mech 1967; 17: 89–105
14 A Weinstein. Omni-Lie algebras. In: Microlocal Analysis of the Schrödinger Equation and Related Topics. RIMS Kôkyûroku, No 1176. Kyoto: Kyoto University, 2000, 95−102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed