1 |
P-A Absil, C G Baker, K A Gallivan. Trust-region methods on Riemannian manifolds. Found Comput Math 2007; 7(3): 303–330
|
2 |
P-A AbsilR MahonyR Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton NJ: Princeton Univ Press, 2008
|
3 |
R L Adler, J P Dedieu, J Y Margulies, M Martens, M Shub. Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J Numer Anal 2002; 22(3): 359–390
|
4 |
M S Apostolopoulou, D G Sotiropoulos, C A Botsaris. A curvilinear method based on minimal-memory BFGS updates. Appl Math Comput 2010; 217(2): 882–892
|
5 |
B W Bader, R B Schnabel. Curvilinear linesearch for tensor methods. SIAM J Sci Comput 2003; 25(2): 604–622
|
6 |
E M L Beale. On minimizing a convex function subject to linear inequalities. J R Stat Soc Ser B 1955; 17(2): 173–184
|
7 |
D P Bertsekas. Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scientific, 1999
|
8 |
R Boscolo, H Pan, V P Roychowdhury. Independent component analysis based on nonparametric density estimation. IEEE Trans Neural Netw 2004; 15(1): 55–65
|
9 |
C A Botsaris. Constrained optimization along geodesics. J Math Anal Appl 1981; 79(2): 295–306
|
10 |
R W Brockett. Differential geometry and the design of gradient algorithms. In: Differential Geometry: Partial Differential Equations on Manifolds. Proc Sympos Pure Math, Vol 54, Part 1. Providence, RI: AMS, 1993, 69–92
|
11 |
D CaiX F He J W Han. Semi-supervised discriminant analysis. In: IEEE 11th International Conference on Computer Vision. IEEE, 2007, https://doi: 10.1109/ICCV.2007.4408856
|
12 |
X Y Chen, S G Zhang. A geometric method for a class of convex programs. J Fujian Norm Univ (Nat Sci Ed) 2012; 28(2): 7–10
|
13 |
M T Chu. Curves on S(n-1) that lead to eigenvalues or their means of a matrix. SIAM J Algebraic Discrete Methods 1986; 7(3): 425–432
|
14 |
D Conforti, L Grandinetti, R Musmanno. A parallel tensor algorithm for nonlinear optimization. Optim Method Softw 1994; 3(1/2/3): 125–142
|
15 |
D Conforti, M Mancini. A curvilinear search algorithm for unconstrained optimization by automatic differentiation. Optim Method Softw 2001; 15(3/4): 283–297
|
16 |
G B Dantzig. Maximization of a linear function of variables subject to linear inequalities. In: Activity Analysis of Production and Allocation. Cowles Commission Monograph, No 13. New York: John Wiley & Sons, 1951, 339–347
|
17 |
J E Jr Dennis, N Echebest, M T Guardarucci, J M Martinez, H D Scolnik, C Vacchino. A curvilinear search using tridiagonal secant updates for unconstrained optimization. SIAM J Optim 1991; 1(3): 333–357
|
18 |
A Edelman, T A Arias, S T Smith. The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 1998; 20(2): 303–353
|
19 |
M C Ferris, S Lucid, M Roma. Nonmonotone curvilinear line search methods for unconstrained optimization. Comput Optim Appl 1996; 6(2): 117–136
|
20 |
A V FiaccoG P McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York: John Wiley & Sons, 1968
|
21 |
R Fletcher. Practical Methods of Optimization, 2nd ed. Chichester: John Wiley & Sons, 1987
|
22 |
D Gabay. Minimizing a differentiable function over a differentiable manifold. J Optim Theory Appl 1982; 37(2): 177–219
|
23 |
D Goldfarb. Curvilinear path steplength algorithms for minimization which use directions of negative curvature. Math Program 1980; 18(1): 31–40
|
24 |
N I M Gould, S Lucidi, M Roma, L Toint Ph. Exploiting negative curvature directions in linesearch methods for unconstrained optimization. Optim Method Softw 2000; 14(1/2): 75–98
|
25 |
L Grandinetti. Nonlinear optimization by a curvilinear path strategy. In: System Modeling and Optimization. Lect Notes Control Inf Sci, Vol 59. Berlin: Springer-Verlag, 1984, 289–298
|
26 |
N W Henderson. Arc search methods for linearly constrained optimization. Ph D Thesis. Stanford, CA: Stanford University, 2012
|
27 |
W HockK Schittkowski. Test Examples for Nonlinear Programming Codes. Lecture Notes in Econom and Math Systems, Vol 187. Berlin: Springer-Verlag, 1981
|
28 |
A Isidori. Nonlinear Control Systems, 3rd ed. Berlin: Springer-Verlag, 1995
|
29 |
L D James, R W Heath. Limited feedback unitary precoding for spatial multiplexing systems. IEEE Trans Inform Theory 2005; 51(8): 2967–2976
|
30 |
L V Kantorovich. Mathematical methods of organizing and planning production. Manag Sci 1960; 6(4): 366–422
|
31 |
N Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorics 1984; 4(4): 373–395
|
32 |
V KleeG J Minty. How good is the simplex algorithm? In: Inequalities, III (Shisha O ed). New York: Academic Press, 1972, 159–175
|
33 |
H W KuhnA W Tucker. Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (Neyman J ed). Berkeley, CA: Univ California Press, 1951, 481–492
|
34 |
P Y Lee. Geometric optimization for computer vision. Ph D Thesis. Canberra: Austral Nat Univ, 2005
|
35 |
G W Li, Y P Liu, J Yin, Z L Shi. Planar object recognition based on Riemannian manifold. Acta Autom Sin 2010; 36(4): 465–474
|
36 |
S Lucidi, F Rochetich, M Roma. Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization. SIAM J Optim 1998; 8(4): 916–939
|
37 |
D G Luenberger. Introduction to Linear and Nonlinear Programming. Reading, MA: Addison Wesley, 1972
|
38 |
D G LuenbergerY Y Ye. Linear and Nonlinear Programming, 3rd ed. New York: Springer Science+Business Media, 2008
|
39 |
Y Ma, J Košecká, S Sastry. Optimization criteria and geometric algorithms for motion and structure estimation. Int J Comput Vis 2001; 44(3): 219–249
|
40 |
J H Manton. Optimization algorithms exploiting unitary constraints. IEEE Trans Signal Process 2002; 50(3): 635–650
|
41 |
J M Martìnez, R F Santos. An algorithm for solving nonlinear least-squares problems with a new curvilinear search. Computing 1990; 44(1): 83–90
|
42 |
G P McCormick. A modification of Armijo’s step-size rule for negative curvature. Math Program 1977; 13(1): 111–115
|
43 |
N Meggido. Pathways to the optimal set in linear programming. In: Progress in Mathematical Programming: Interior-point and Related Methods. New York: Springer-Verlag, 1989, 131–158
|
44 |
S Mehrotra. On the implementation of a primal-dual interior point method. SIAM J Optim 1992; 2(4): 575–601
|
45 |
S Mizuno, M Todd, Y Y Ye. On adaptive-step primal-dual interior-point algorithms for linear programming. Math Oper Res 1993; 18(4): 964–981
|
46 |
R D C Monteiro, I Adler, M G C Resende. A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Math Oper Res 1990; 15(2): 191–214
|
47 |
J J Moré, D C Sorensen. On the use of directions of negative curvature in a modified Newton method. Math Program 1979; 16(1): 1–20
|
48 |
Netlib. Netlib linear programming library, 2016
|
49 |
J NocedalS J Wright. Numerical Optimization. New York: Springer-Verlag, 1999
|
50 |
A Olivares, J M Moguerza, F J Prieto. Nonconvex optimization using negative curvature within a modified linesearch. European J Oper Res 2008; 189(3): 706–722
|
51 |
T Rapcsák. Geodesic convexity in nonlinear optimization. J Optim Theory Appl 1991; 69(1): 169–183
|
52 |
W Ring, B Wirth. Optimization methods on Riemannian manifolds and their application to shape space. SIAM J Optim 2012; 22(2): 596–627
|
53 |
S T Smith. Geometric optimization methods for adaptive filtering. Ph D Thesis. Cambridge, MA: Harvard University, 1993
|
54 |
S T Smith. Optimization techniques on Riemannian manifolds. In: Hamiltonian and Gradient Flows, Algorithms and Control (Bloch A ed). Fields Inst Commun, Vol 3. Providence, RI: AMS, 1994, 113–136
|
55 |
W Y Sun, Q Y Zhou. An unconstrained optimization method using nonmonotone second order Goldstein’s line search. Sci China Math 2007; 50(10): 1389–1400
|
56 |
A L Tits, A Wachter, S Bakhtiari, T J Urban, C T Lawrence. A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J Optim 2003; 14(1): 173–199
|
57 |
C Udrişte. Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, Vol 297. Dordrecht: Kluwer Acad Publ, 1994
|
58 |
J F Vasconcelos, G Elkaim, C Silvestre, P Oliveira, B Cardeira. Geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Trans Aerosp Electron Syst 2011; 47(2): 1293–1306
|
59 |
S J Wright. Primal-dual Interior-point Methods. Philadelphia, PA: SIAM, 1997
|
60 |
X M Yang, H W Liu, C H Liu. Arc-search interior-point algorithm. J Jilin Univ Sci 2014; 52(4): 693–697
|
61 |
Y G Yang. Robust system design: pole assignment approaches. Ph D Thesis. College Park, MD: Univ Maryland, 1996
|
62 |
Y G Yang. Globally convergent optimization algorithms on Riemannian manifolds: uniform framework for unconstrained and constrained optimization. J Optim Theory Appl 2007; 132(2): 245–265
|
63 |
Y G Yang. Arc-search path-following interior-point algorithms for linear programming. Optimization Online, 2009
|
64 |
Y G Yang. A polynomial arc-search interior-point algorithm for convex quadratic programming. European J Oper Res 2011; 215(1): 25–38
|
65 |
Y G Yang. A polynomial arc-search interior-point algorithm for linear programming. J Optim Theory Appl 2013; 158(3): 859–873
|
66 |
Y G Yang. A globally and quadratically convergent algorithm with efficient implementation for unconstrained optimization. Comput Appl Math 2015; 34(3): 1219–1236
|
67 |
Y G Yang. Attitude determination using Newton’s method on Riemannian manifold. Proc IMechE Part G. J Aerosp Eng 2015; 229(14): 2737–2742
|
68 |
Y G Yang. Curve LP—a MATLAB implementation of an infeasible interior-point algorithm for linear programming. Numer Algorithms, 2016, doi: 10.1007/s11075-016-0180-1
|
69 |
G Yang Yi. Uniform framework for unconstrained and constrained optimization: optimization on Riemannian manifolds. In: 2010 International Conference on E-Product E-Service and E-Entertainment. Piscataway, NJ: IEEE, 2010 (in Chinese)
|
70 |
Y Y Ye. Interior-point Algorithms: Theory and Analysis. New York: John Wiley & Sons, 1997
|
71 |
J J Zhang, J Cao, Y Y Wang. Gradient algorithm on Stiefel manifold and application in feature extraction. J Radars 2013; 2(3): 309–313
|
72 |
Q Y Zhou, W Y Sun. A nonmonotone second-order steplength method for unconstrained minimization. J Comput Math 2007; 25(1): 104–112
|