Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (3) : 545-555    https://doi.org/10.1007/s11464-011-0135-8
RESEARCH ARTICLE
Exact boundary controllability of nodal profile for 1-D quasilinear wave equations
Ke WANG()
School of Mathematics Sciences, Fudan University, Shanghai 200433, China
 Download: PDF(151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the theory of semi-global C2 solution for 1-D quasilinear wave equations, the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations is obtained by a constructive method, and the corresponding global exact boundary controllability of nodal profile is also obtained under certain additional hypotheses.

Keywords Quasilinear wave equation      quasilinear hyperbolic system      local exact boundary controllability of nodal profile      global exact boundary controllability of nodal profile     
Corresponding Author(s): WANG Ke,Email:kwang0815@gmail.com   
Issue Date: 01 June 2011
 Cite this article:   
Ke WANG. Exact boundary controllability of nodal profile for 1-D quasilinear wave equations[J]. Front Math Chin, 2011, 6(3): 545-555.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0135-8
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I3/545
1 Gugat M, Herty M, Schleper V. Flow control in gas networks: Exact controllability to a given demand. Math Meth Appl Sci , 2011, 34(7): 745-757
doi: 10.1002/mma.1394
2 Li Tatsien. Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Series on Applied Mathematics , Vol 3. Springfield & Beijing: American Institute of Mathematical Sciences & Higher Education Press, 2010
3 Li Tatsien. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems. Math Meth Appl Sci , 2010, 33(17): 2101-2106
doi: 10.1002/mma.1321
4 Li Tatsien, Rao Bopeng. Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin Ann Math, Ser B , 2002, 23(2): 209-218
5 Li Tatsien, Rao Bopeng. Exact boundary controllability for quasilinear hyperbolic systems. SIAM J Control Optim , 2003, 41(6): 1748-1755
doi: 10.1137/S0363012901390099
6 Li Tatsien, Rao Bopeng. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin Ann Math, Ser B , 2010, 31(5): 723-742
7 Li Tatsien, Yu Lixin. Exact boundary controllability for 1-D quasilinear wave equations. SIAM J Control Optim , 2006, 45(3): 1074-1083
doi: 10.1137/S0363012903427300
8 Li Tatsien, Yu Wenci. Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke Univ Math Ser V . Duhurm: Duke University Press, 1985
9 Wang Ke. Global exact boundary controllability for 1-D quasilinear wave equations. Math Meth Appl Sci , 2011, 34(3): 315-324
doi: 10.1002/mma.1358
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed