Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (5) : 873-882    https://doi.org/10.1007/s11464-012-0221-6
RESEARCH ARTICLE
Manifolds with pinched 2-positive curvature perator
Gang PENG(), Hongliang SHAO
Department of Mathematics, Capital Normal University, Beijing 100048, China
 Download: PDF(138 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we show that any complete Riemannian manifold of dimension great than 2 must be compact if it has positive complex sectional curvature and δ-pinched 2-positive curvature operator, namely, the sum of the two smallest eigenvalues of curvature operator are bounded below by δ·scal>0. If we relax the restriction of positivity of complex sectional curvature to nonnegativity, we can also show that the manifold is compact under the additional condition of positive asymptotic volume ratio.

Keywords δ-pinched 2-positive curvature operator      complex sectional curvature      asymptotic volume ratio     
Corresponding Author(s): PENG Gang,Email:penggang9521@yahoo.com.cn   
Issue Date: 01 October 2012
 Cite this article:   
Gang PENG,Hongliang SHAO. Manifolds with pinched 2-positive curvature perator[J]. Front Math Chin, 2012, 7(5): 873-882.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0221-6
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I5/873
1 B?hm C, Wilking B. Manifolds with positive curvature operators are space forms. Ann Math , 2008, 167: 1079-1097
doi: 10.4007/annals.2008.167.1079
2 Brendle S. A generalization of Hamilton’s differential Harnack inequality for the Ricci flow. arXiv: 0707.2192v2
3 Brendle S, Schoen R. Manifolds with 1/4-pinched curvature are space forms. J Amer Math Soc , 2009, 22: 287-307
doi: 10.1090/S0894-0347-08-00613-9
4 Brendle S, Schoen R. Sphere theorem in geometry. arXiv: 0904.2604v1
5 Cabezas-Rivas E, Wilking B. How to produce a Ricci flow via Cheeger-Gromoll exhaustion. arXiv: 11070606v3
6 Carrillo J, Ni L. Sharp logarithmic Sobolev inequalities on gradient solitons and applications. arXiv: 0806.2417
7 Cheeger J, Ebin D. Comparison Theorems in Riemannian Geometry. Amsterdam: North-Holland, 1975
8 Chen B L, Zhu X P. Complete Riemannian manifolds with pointwise pinched curvature. Invent Math , 2000, 140(2): 423-452
doi: 10.1007/s002220000061
9 Chow B, Chu S C, Glickenstein D, Guenther C, Isenberg J, Ivey T, Knopf D, Lu P, Luo F, Ni L. The Ricci Flow: Techniques and Applications. Part II: Analytic Aspects. Mathematical Surveys and Monographs, 144 . Providence: Amer Math Soc, 2008
10 Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics, 3. Beijing: Science Press; Graduate Studies in Mathematics, 77 . Providence: Amer Math Soc (co-publication), 2006
11 Hamilton R S. Three-manifolds with positive Ricci curvature. J Differential Geom , 1982, 24(2): 255-306
12 Hamilton R S. Convex hypersufaces with pinched second fundamental form. Comm Anal Geom , 1994, 2(1): 167-172
13 Hamilton R S. Formation of singularities in the Ricci flow. In: Collected Papers on Ricci Flow. Series in Geometry and Topology, 37 . Somerville: International Press, 2003, 1-117
14 Huisken G. Ricci deformation of the metric on a Riemannian manifold. J Differential Geom , 1985, 21: 47-62
15 Ma L, Cheng L. On the conditions to control curvature tensors of Ricci flow. Ann Global Anal Geom , 2010, 37(4): 403-411
doi: 10.1007/s10455-010-9194-4
16 Ni L. Ancient solutions to K?hler-Ricci flow. Math Res Lett , 2005, 12(5-6): 633-653
17 Ni L, Wolfson J. Positive complex sectional curvature Ricci flow and the differential sphere theorem. arXiv: 0706.0332v1
18 Ni L, Wu B Q. Complete manifolds with nonnegative curvature operator. Proc Amer Math Soc , 2007, 135: 3021-3028
doi: 10.1090/S0002-9939-06-08872-1
19 Perelman G. The entropy formula for the Ricci flow and its geometric application. arXiv: math/0211159
20 Petrunin A, Tuschmann W. Asymptotical flatness and cone structure at infinity. Math Ann , 2001, 321: 775-788
doi: 10.1007/s002080100252
21 Schulze F, Simon M. Expanding solitons with non-negative curvature operator coming out of cones. arXiv: 1008.1408v1
22 Shi W X. Deforming the metric on complete Riemannian manifolds. J Differential Geom , 1989, 30: 223-301
23 Simon M. Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below. arXiv: 0903.2142
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed