Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 797-812    https://doi.org/10.1007/s11464-014-0408-0
RESEARCH ARTICLE
Gamma-Dirichlet algebra and applications
Shui FENG1,*(),Fang XU2
1. Department of Mathematics and Statistics, McMaster University, Hamilton, Ont L8S 4K1, Canada
2. Canadian Imperial Bank of Commerce, 21 Melinda St, Toronto, Ont M5L 1B9, Canada
 Download: PDF(174 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Gamma-Dirichlet algebra corresponds to the decomposition of the gamma process into the independent product of a gamma random variable and a Dirichlet process. This structure allows us to study the properties of the Dirichlet process through the gamma process and vice versa. In this article, we begin with a brief survey of several existing results concerning this structure. New results are then obtained for the large deviations of the jump sizes of the gamma process and the quasi-invariance of the two-parameter Poisson-Dirichlet distribution. We finish the paper with the derivation of the transition function of the Fleming-Viot process with parent independent mutation from the transition function of the measure-valued branching diffusion with immigration by exploring the Gamma-Dirichlet algebra embedded in these processes. This last result is motivated by an open problem proposed by S. N. Ethier and R. C. Griffiths.

Keywords Coalescent      Dirichlet process      gamma process      quasi-invariant      random time-change     
Corresponding Author(s): Shui FENG   
Issue Date: 26 August 2014
 Cite this article:   
Shui FENG,Fang XU. Gamma-Dirichlet algebra and applications[J]. Front. Math. China, 2014, 9(4): 797-812.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0408-0
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/797
1 Dawson D A, Feng S. Asymptotic behavior of Poisson-Dirichlet distribution for large mutation rate. Ann Appl Probab, 2006, 16(2): 562-582
doi: 10.1214/105051605000000818
2 Dembo A, Zeitouni O. Large Deviations Techniques and Applications. 2nd ed. Applications of Mathematics, Vol 38. New York: Springer-Verlag, 1998
3 Ethier S N, Griffiths R C. The transition function of a Fleming-Viot process. Ann Probab, 1993, 21(3): 1571-1590
doi: 10.1214/aop/1176989131
4 Ethier S N, Griffiths R C. The transition function of a measure-valued branching diffusion with immigration. In: Cambanis S, Ghosh J, Karandikar R L, Sen P K, eds. Stochastic Processes. A Festschrift in Honour of Gopinath Kallianpur. New York: Springer, 1993, 71-79
5 Ethier S N, Kurtz T G. Convergence to Fleming-Viot processes in the weak atomic topology. Stochastic Process Appl, 1994, 54: 1-27
doi: 10.1016/0304-4149(94)00006-9
6 Feng S. Poisson-Dirichlet distribution with small mutation rate. Stochastic Process Appl, 2009, 119: 2082-2094
doi: 10.1016/j.spa.2008.11.002
7 Feng S. The Poisson-Dirichlet Distribution and Related Topics. Probability and Its Applications. New York: Springer, 2010
doi: 10.1007/978-3-642-11194-5
8 Griffiths R C. On the distribution of allele frequencies in a diffusion model. Theor Pop Biol, 1979, 15: 140-158
doi: 10.1016/0040-5809(79)90031-5
9 Handa K. Quasi-invariant measures and their characterization by conditional probabilities. Bull Sci Math, 2001, 125(6-7): 583-604
doi: 10.1016/S0007-4497(01)01100-9
10 Kingman J C F. Random discrete distributions. J R Stat Soc B, 1975, 37: 1-22
11 Li Z H. Measure-Valued Branching Markov Processes. Probability and Its Applications. New York: Springer, 2011
doi: 10.1007/978-3-642-15004-3
12 Lukacs E. A characterization of the gamma distribution. Ann Math Statist, 1955, 26: 319-324
doi: 10.1214/aoms/1177728549
13 Perman M, Pitman J, Yor M. Size-biased sampling of Poisson point processes and excursions. Probab Theory Related Fields, 1992, 92: 21-39
doi: 10.1007/BF01205234
14 Pitman J, Yor M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann Probab, 1997, 25(2): 855-900
doi: 10.1214/aop/1024404422
15 Shiga T. A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J Math Kyoto Univ, 1990, 30: 245-279
16 Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Pop Biol, 1984, 26: 119-164
doi: 10.1016/0040-5809(84)90027-3
17 Tsilevich N V, Vershik A. Quasi-invariance of the gamma process and the multiplicative properties of the Poisson-Dirichlet measures. C R Acad Sci Paris, Sér I, 1999, 329: 163-168
18 Tsilevich N V, Vershik A, Yor M. An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process. J Funct Anal, 2001, 185(1): 274-296
doi: 10.1006/jfan.2001.3767
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed