Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (1) : 1-19    https://doi.org/10.1007/s11464-015-0505-8
RESEARCH ARTICLE
Weighted norm inequalities with multiple-weight for singular integral operators with non-smooth kernels
Rui BU,Houyu JIA()
Department of Mathematics, Zhejiang University, Hangzhou 310027, China
 Download: PDF(183 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By sharp maximal function, we establish a weighted estimate with multiple-weight for the multilinear singular integral operators with non-smooth kernels.

Keywords Singular integral operator      multiple weight      sharp maximal function      weighted estimate      approximation to identity     
Corresponding Author(s): Houyu JIA   
Issue Date: 02 December 2015
 Cite this article:   
Rui BU,Houyu JIA. Weighted norm inequalities with multiple-weight for singular integral operators with non-smooth kernels[J]. Front. Math. China, 2016, 11(1): 1-19.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0505-8
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I1/1
1 Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315–331
https://doi.org/10.1090/S0002-9947-1975-0380244-8
2 Coifman R R, Meyer Y. Nonlinear harmonic analysis, operator theory and PDE. In: Beijing Lectures in Harmonic Analysis. Ann of Math Stud, 112. Princeton: Princeton Univ Press, 1986, 3–45
3 Duong X, Gong R, Grafakos L, Li J, Yan L. Maximal operator for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517–2541
https://doi.org/10.1512/iumj.2009.58.3803
4 Duong X, Grafakos L, Yan L. Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans Amer Math Soc, 2010, 362: 2089–2113
https://doi.org/10.1090/S0002-9947-09-04867-3
5 Grafakos L, Liu L, Yang D. Multiple-weighted norm inequalities for maximal multilinear singular integrals with non-smooth kernels. Proc Roy Soc Edinburgh Sect A, 2011, 141: 755–775
https://doi.org/10.1017/S0308210509001383
6 Grafakos L, Torres R H. Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ Math J, 2002, 51: 1261–1276
https://doi.org/10.1512/iumj.2002.51.2114
7 Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164
https://doi.org/10.1006/aima.2001.2028
8 Hu G, Lu S. Weighted estimates for the multilinear singular integral operators with non-smooth kernels. Sci China Math, 2011, 54: 587–602
https://doi.org/10.1007/s11425-010-4135-z
9 Hu G, Yang D. Weighted estimates for singular integral operators with nonsmooth kernels and applications. J Aust Math Soc, 2008, 85: 377–417
https://doi.org/10.1017/S1446788708000657
10 Hu G, Zhu Y. Weighted norm inequality with general weights for the commutator of Calderón. Acta Math Sin (Engl Ser), 2013, 29: 505–514
https://doi.org/10.1007/s10114-012-1352-0
11 Jiao Y. A weighted norm inequality for multilinear fourier multiplier operator. Math Inequal Appl, 2014, 17: 899–912
https://doi.org/10.7153/mia-17-65
12 Lerner A K, Ombrosi S, Pérez C, Torres R H, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv Math, 2009, 220: 1222–1264
https://doi.org/10.1016/j.aim.2008.10.014
13 Martell J M. Sharp maximal functions associated with approximations of the identity in the space of homogeneous type and applications. Studia Math, 2004, 161: 113–145
https://doi.org/10.4064/sm161-2-2
[1] Zhehui WANG, Dongyong YANG. An equivalent characterization of BMO with Gauss measure[J]. Front. Math. China, 2017, 12(3): 749-768.
[2] Dongxiang CHEN, Shanzhen LU, Suzhen MAO. Multiple weighted estimates for maximal vector-valued commutator of multilinear Calderón-Zygmund singular integrals[J]. Front. Math. China, 2017, 12(3): 531-558.
[3] Guoen HU, Yan MENG. Estimates for multilinear singular integral operators with nonsmooth kernels[J]. Front Math Chin, 2012, 7(1): 51-67.
[4] WANG Rouhuai. Analyticity of solutions of analytic non-linear general elliptic boundary value problems, and some results about linear problems[J]. Front. Math. China, 2006, 1(3): 382-429.
[5] YAN Lixin, YANG Dachun. New Sobolev spaces via generalized Poincar? inequalities on metric measure spaces[J]. Front. Math. China, 2006, 1(3): 480-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed