|
|
|
Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance |
Peng LUO2,*( ) |
1. School of Mathematics and Qilu Securities Institute for Financial Studies,Shandong University, Jinan 250100, China 2. Department of Mathematics and Statistics, University of Konstanz, Konstanz 78457, Germany |
|
| 1 |
Bihari I. A generalization of a lemma of bellman and its application to uniqueness problems of differential equations. Acta Math Hungar, 1956, 7(1): 81–94
https://doi.org/10.1007/BF02022967
|
| 2 |
Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal, 2011, 34(2):139–161
https://doi.org/10.1007/s11118-010-9185-x
|
| 3 |
El Karoui N. Processus de réflexion dans ℝn. In: Meyer P A, ed. Séminaire deprobabilités IX, Université de Strasbourg. Lecture Notes in Math, Vol 465, Berlin:Springer, 1975, 534–554
https://doi.org/10.1007/BFb0103022
|
| 4 |
El Karoui N, Chaleyat-Maurel M. Un probl`eme de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur ℝ, cas continu. In: Exposés duSéminaire J. Azéma-M. Yor. Held at the Université Pierre et Marie Curie (Paris, 1976-1977). Astérisque, 52, 53, Société Math′ematique de France, Paris, 1978, 117–144
|
| 5 |
El Karoui N, Kapoudjian C, Pardoux E, Peng S, Quenez M C. Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann Probab, 1997, 25(2):702–737
https://doi.org/10.1214/aop/1024404416
|
| 6 |
Gao F. Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2009, 119: 3356–3382
https://doi.org/10.1016/j.spa.2009.05.010
|
| 7 |
Gegout-Petit A, Pardoux E. Equations différentielles stochastiques rétrogrades refl echiesdans un convexe. Stoch Stoch Rep, 1996, 57: 111–128
https://doi.org/10.1080/17442509608834054
|
| 8 |
Hu Y, Tang S. Multi-dimensional BSDE with oblique reflection and optimal switching.Probab Theory Related Fields, 2010, 147: 89–121
https://doi.org/10.1007/s00440-009-0202-1
|
| 9 |
Li X, Peng S. Stopping times and related Itô calculus with G-Brownian motion.Stochastic Process Appl, 2011, 121: 1492–1508
https://doi.org/10.1016/j.spa.2011.03.009
|
| 10 |
Lin Q. Local time and Tanaka formula for the G-Brownian motion. J Math Anal Appl,2013, 398: 315–334
https://doi.org/10.1016/j.jmaa.2012.09.001
|
| 11 |
Lin Q. Some properties of stochastic differential equations driven by G-Brownian motion. Acta Math Sin (Engl Ser), 2013, 29: 923–942
https://doi.org/10.1007/s10114-013-0701-y
|
| 12 |
Lin Q. Differentiability of stochastic differential equations driven by G-Brownian motion. Sci China Math, 2013, 56: 1087–1107
https://doi.org/10.1007/s11425-012-4534-4
|
| 13 |
Lin Y. Stochastic differential equations driven by G-Brownian motion with reflecting boundary. Electron J Probab, 2013, 18(9): 1–23
https://doi.org/10.1214/ejp.v18-2566
|
| 14 |
Lin Y. Équations différentielles stochastiques sous les espérances mathématiquesnonlinéaire et applications. Ph D Thesis. Université de Rennes 1, 2013,tel.archivesouvertes.fr/tel-00955814
|
| 15 |
Lin Y, Bai X. On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz coefficients. Acta Math Appl Sin Engl Ser, 2014, 30(3): 589–610
https://doi.org/10.1007/s10255-014-0405-9
|
| 16 |
Lions P L, Sznitman A L. Stochastic differential equations with reflecting boundary conditions. Comm Pure Appl Math, 1984, 37: 511–537
https://doi.org/10.1002/cpa.3160370408
|
| 17 |
Luo P, Jia G. On monotonicity and order-preservation for multi-dimensional G-diffusion processes. Stoch Anal Appl, 2015, 33(1): 67–90
https://doi.org/10.1080/07362994.2014.973966
|
| 18 |
Luo P, Wang F. Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stochastic Process Appl, 2014, 124: 3869–3885
https://doi.org/10.1016/j.spa.2014.07.004
|
| 19 |
Peng S. Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math Appl Sin Engl Ser, 2004, 20(2): 1–24
https://doi.org/10.1007/s10255-004-0161-3
|
| 20 |
Peng S. Nonlinear expectations and nonlinear Markov chains. Chin Ann Math Ser B, 2005, 26(2): 159–184
https://doi.org/10.1142/S0252959905000154
|
| 21 |
Pen g S. G-expectation, G-Brownian motion and related stochastic calculus of Itô type.In: Stochastic Analysis and Applications, Abel Symp, 2. Berlin: Springer, 2007, 541–567
|
| 22 |
Peng S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci China Ser A, 2009,52(7): 1391–1411
https://doi.org/10.1007/s11425-009-0121-8
|
| 23 |
Peng S. Nolinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1
|
| 24 |
Peng S. Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians,Hyderabad, India, 2010
https://doi.org/10.1142/9789814324359_0019
|
| 25 |
Qian Z, Xu M. Skorohod equation and reflected bacward stochastic differential equations. arXiv: 1103.2078v1
|
| 26 |
Ramasubramanian S. Reflected backward stochastic differential equations in an orthant. Proc Indian Acad Sci Math Sci, 2002, 112: 347–360
https://doi.org/10.1007/BF02829759
|
| 27 |
Skorohod A V. Stochastic equations for diffusion processes in a bounded region. Theo Veroyatnost i Primenen, 1961, 6: 287–298
|
| 28 |
Skorohod A V. Stochastic equations for diffusion processes in a bounded region II. Theo Veroyatnost i Primenen, 1962, 7: 5–25
|
| 29 |
Stroock D W, Varadhan S R S. Diffusion processes with boundary conditions. CommPure Appl Math, 1971, 24: 147–225
https://doi.org/10.1002/cpa.3160240206
|
| 30 |
Tanaka H. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math J, 1979, 9: 163–177
|
| 31 |
Yamada T. On the uniqueness of solutions of stochastic differential equations with reflecting barrier conditions. In: Meyer P A, ed. S′eminaire de Probabilité X, Université de Strasbourg. Lecture Notes in Math, Vol 511. Berlin: Springer, 1976,240–244
https://doi.org/10.1007/BFb0101111
|
| 32 |
Zhang B, Xu J, Kannan D. Extension and application of Itô’s formula under G-framework. Stoch Anal Appl, 2010, 28: 322–349
https://doi.org/10.1080/07362990903546595
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|