Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (1) : 123-140    https://doi.org/10.1007/s11464-015-0433-7
RESEARCH ARTICLE
Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance
Peng LUO2,*()
1. School of Mathematics and Qilu Securities Institute for Financial Studies,Shandong University, Jinan 250100, China
2. Department of Mathematics and Statistics, University of Konstanz, Konstanz 78457, Germany
 Download: PDF(174 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the uniqueness and existence of solutions of reflected G-stochastic differential equations (RGSDEs) with nonlinear resistance under an integral-Lipschitz condition of coefficients. Moreover, we obtain the comparison theorem for RGSDEs with nonlinear resistance.

Keywords G-Brownian motion      G-expectation      reflected G-stochastic differential equation (RGSDE)      nonlinear resistance      comparison theorem     
Corresponding Author(s): Peng LUO   
Issue Date: 02 December 2015
 Cite this article:   
Peng LUO. Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance[J]. Front. Math. China, 2016, 11(1): 123-140.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0433-7
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I1/123
1 Bihari I. A generalization of a lemma of bellman and its application to uniqueness problems of differential equations. Acta Math Hungar, 1956, 7(1): 81–94
https://doi.org/10.1007/BF02022967
2 Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal, 2011, 34(2):139–161
https://doi.org/10.1007/s11118-010-9185-x
3 El Karoui N. Processus de réflexion dans ℝn. In: Meyer P A, ed. Séminaire deprobabilités IX, Université de Strasbourg. Lecture Notes in Math, Vol 465, Berlin:Springer, 1975, 534–554
https://doi.org/10.1007/BFb0103022
4 El Karoui N, Chaleyat-Maurel M. Un probl`eme de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur ℝ, cas continu. In: Exposés duSéminaire J. Azéma-M. Yor. Held at the Université Pierre et Marie Curie (Paris, 1976-1977). Astérisque, 52, 53, Société Math′ematique de France, Paris, 1978, 117–144
5 El Karoui N, Kapoudjian C, Pardoux E, Peng S, Quenez M C. Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann Probab, 1997, 25(2):702–737
https://doi.org/10.1214/aop/1024404416
6 Gao F. Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2009, 119: 3356–3382
https://doi.org/10.1016/j.spa.2009.05.010
7 Gegout-Petit A, Pardoux E. Equations différentielles stochastiques rétrogrades refl echiesdans un convexe. Stoch Stoch Rep, 1996, 57: 111–128
https://doi.org/10.1080/17442509608834054
8 Hu Y, Tang S. Multi-dimensional BSDE with oblique reflection and optimal switching.Probab Theory Related Fields, 2010, 147: 89–121
https://doi.org/10.1007/s00440-009-0202-1
9 Li X, Peng S. Stopping times and related Itô calculus with G-Brownian motion.Stochastic Process Appl, 2011, 121: 1492–1508
https://doi.org/10.1016/j.spa.2011.03.009
10 Lin Q. Local time and Tanaka formula for the G-Brownian motion. J Math Anal Appl,2013, 398: 315–334
https://doi.org/10.1016/j.jmaa.2012.09.001
11 Lin Q. Some properties of stochastic differential equations driven by G-Brownian motion. Acta Math Sin (Engl Ser), 2013, 29: 923–942
https://doi.org/10.1007/s10114-013-0701-y
12 Lin Q. Differentiability of stochastic differential equations driven by G-Brownian motion. Sci China Math, 2013, 56: 1087–1107
https://doi.org/10.1007/s11425-012-4534-4
13 Lin Y. Stochastic differential equations driven by G-Brownian motion with reflecting boundary. Electron J Probab, 2013, 18(9): 1–23
https://doi.org/10.1214/ejp.v18-2566
14 Lin Y. Équations différentielles stochastiques sous les espérances mathématiquesnonlinéaire et applications. Ph D Thesis. Université de Rennes 1, 2013,tel.archivesouvertes.fr/tel-00955814
15 Lin Y, Bai X. On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz coefficients. Acta Math Appl Sin Engl Ser, 2014, 30(3): 589–610
https://doi.org/10.1007/s10255-014-0405-9
16 Lions P L, Sznitman A L. Stochastic differential equations with reflecting boundary conditions. Comm Pure Appl Math, 1984, 37: 511–537
https://doi.org/10.1002/cpa.3160370408
17 Luo P, Jia G. On monotonicity and order-preservation for multi-dimensional G-diffusion processes. Stoch Anal Appl, 2015, 33(1): 67–90
https://doi.org/10.1080/07362994.2014.973966
18 Luo P, Wang F. Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stochastic Process Appl, 2014, 124: 3869–3885
https://doi.org/10.1016/j.spa.2014.07.004
19 Peng S. Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math Appl Sin Engl Ser, 2004, 20(2): 1–24
https://doi.org/10.1007/s10255-004-0161-3
20 Peng S. Nonlinear expectations and nonlinear Markov chains. Chin Ann Math Ser B, 2005, 26(2): 159–184
https://doi.org/10.1142/S0252959905000154
21 Pen g S. G-expectation, G-Brownian motion and related stochastic calculus of Itô type.In: Stochastic Analysis and Applications, Abel Symp, 2. Berlin: Springer, 2007, 541–567
22 Peng S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci China Ser A, 2009,52(7): 1391–1411
https://doi.org/10.1007/s11425-009-0121-8
23 Peng S. Nolinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1
24 Peng S. Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians,Hyderabad, India, 2010
https://doi.org/10.1142/9789814324359_0019
25 Qian Z, Xu M. Skorohod equation and reflected bacward stochastic differential equations. arXiv: 1103.2078v1
26 Ramasubramanian S. Reflected backward stochastic differential equations in an orthant. Proc Indian Acad Sci Math Sci, 2002, 112: 347–360
https://doi.org/10.1007/BF02829759
27 Skorohod A V. Stochastic equations for diffusion processes in a bounded region. Theo Veroyatnost i Primenen, 1961, 6: 287–298
28 Skorohod A V. Stochastic equations for diffusion processes in a bounded region II. Theo Veroyatnost i Primenen, 1962, 7: 5–25
29 Stroock D W, Varadhan S R S. Diffusion processes with boundary conditions. CommPure Appl Math, 1971, 24: 147–225
https://doi.org/10.1002/cpa.3160240206
30 Tanaka H. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math J, 1979, 9: 163–177
31 Yamada T. On the uniqueness of solutions of stochastic differential equations with reflecting barrier conditions. In: Meyer P A, ed. S′eminaire de Probabilité X, Université de Strasbourg. Lecture Notes in Math, Vol 511. Berlin: Springer, 1976,240–244
https://doi.org/10.1007/BFb0101111
32 Zhang B, Xu J, Kannan D. Extension and application of Itô’s formula under G-framework. Stoch Anal Appl, 2010, 28: 322–349
https://doi.org/10.1080/07362990903546595
[1] Panpan REN, Fen-Fen YANG. Path independence of additive functionals for stochastic differential equations under G-framework[J]. Front. Math. China, 2019, 14(1): 135-148.
[2] Songting YIN. Comparison theorems on Finsler manifolds with weighted Ricci curvature bounded below[J]. Front. Math. China, 2018, 13(2): 435-448.
[3] Jianguo CAO, Bo DAI, Jiaqiang MEI. A quadrangle comparison theorem and its application to soul theory for Alexandrov spaces[J]. Front Math Chin, 2011, 6(1): 35-48.
[4] BO Lijun, YAO Ruiming. Strong comparison result for a class of re-ected stochastic differential equations with non-Lipschitzian coeffcients[J]. Front. Math. China, 2007, 2(1): 73-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed