Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 199-208    https://doi.org/10.1007/s11464-016-0596-x
RESEARCH ARTICLE
Generalization of CS condition
Liang SHEN1(),Wenxi LI2
1. Department of Mathematics, Southeast University, Nanjing 210096, China
2. Department of Mathematics and Physics, Anhui University of Technology, Ma’anshan 243002, China
 Download: PDF(147 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let R be an associative ring with identity. An R-module M is called an NCS module if C(M)S(M)={0}, where C(M) and S(M) denote the set of all closed submodules and the set of all small submodules of M, respectively. It is clear that the NCS condition is a generalization of the well-known CS condition. Properties of the NCS conditions of modules and rings are explored in this article. In the end, it is proved that a ring R is right Σ-CS if and only if R is right perfect and right countably Σ-NCS. Recall that a ring R is called right Σ-CS if every direct sum of copies of RR is a CS module. And a ring R is called right countably Σ-NCS if every direct sum of countable copies of RR is an NCS module.

Keywords NCS modules      NCS rings      CS rings      Σ-CS rings      countably Σ-NCS     
Corresponding Author(s): Liang SHEN   
Issue Date: 17 November 2016
 Cite this article:   
Liang SHEN,Wenxi LI. Generalization of CS condition[J]. Front. Math. China, 2017, 12(1): 199-208.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0596-x
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/199
1 Anderson F W, Fuller K R. Rings and Categories of Modules. Grad Texts in Math, Vol 13. New York: Springer-Verlag, 1992
https://doi.org/10.1007/978-1-4612-4418-9
2 Chatters A W, Hajarnavis C R. Rings in which every complement right ideal is a direct summand. Q J Math, 1977, 28: 61–80
https://doi.org/10.1093/qmath/28.1.61
3 Chen J L, Li W X. On artiness of right CF rings. Comm Algebra, 2004, 32(11): 4485–4494
https://doi.org/10.1081/AGB-200034189
4 Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules: Supplements and Projectivity in Module Theory. Front Math. Basel: Birkhäuser-Verlag, 2006
5 Dung N V, Huynh D V, Smith P F, Wisbauer R. Extending Modules. Pitman Research Notes Math Ser, 313. Essex: Longman Scientific & Technical, 1994
6 Faith C, Huynh D V. When self-injective rings are QF: a report on a problem. J Algebra Appl, 2002, 1(1): 75–105
https://doi.org/10.1142/S0219498802000070
7 Gómez Pardo J L, Guil Asensio P A. Essential embedding of cyclic modules in projectives. Trans Amer Math Soc, 1997, 349(11): 4343–4353
https://doi.org/10.1090/S0002-9947-97-01529-8
8 Gómez Pardo J L, Guil Asensio P A. Torsionless modules and rings with finite essential socle. In: Dikranjan D, Salce L, eds. Abelian Groups, Module Theory, and Topology. Lect Notes Pure Appl Math, Vol 201. New York: Marcel Dekker, 1998, 261–278
9 Goodearl K R. Ring Theory: Nonsingular Rings and Modules. Monogr Pure Appl Math, Vol 33. New York: Dekker, 1976
10 Lam T Y. Lectures on Modules and Rings. Grad Texts in Math, Vol 189. New York: Springer-Verlag, 1998
11 Lam T Y. A First Course in Noncommutative Rings. Grad Texts in Math, Vol 131. New York: Springer-Verlag, 2001
https://doi.org/10.1007/978-1-4419-8616-0
12 Mohamed S H, Müller B J. Continuous and Discrete Modules. London Math Soc Lecture Note Ser, Vol 147. Cambridge: Cambridge Univ Press, 1990
https://doi.org/10.1017/CBO9780511600692
13 Nicholson W K, Yousif M F. Quasi-Frobenius Rings. Cambridge Tracts in Math, Vol 158. Cambridge: Cambridge Univ Press, 2003
https://doi.org/10.1017/CBO9780511546525
14 Shen L. An approach to the Faith-Menal conjecture. Int Electron J Algebra, 2007, 1(1): 46–50
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed