Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2008, Vol. 2 Issue (4) : 323-331    https://doi.org/10.1007/s11684-008-0062-6
Crk-associated substrate, vascular smooth muscle and hypertension
TANG Dale
The Center for Cardiovascular Sciences, Albany Medical College
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hypertension is characterized by vascular smooth muscle constriction and vascular remodeling involving cell migration, hypertrophy and growth. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has been shown to be a critical cellular component that regulates various smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility is presented. Contraction stimulation induces CAS phosphorylation on Tyr-410 in arterial smooth muscle, creating the binding site for the Src homology (SH) 2/SH3 protein CrkII, which activates neuronal Wiskott-Aldrich syndrome protein (N-WASP)-mediated actin assembly and force development. The functions of CAS in cell migration, hypertrophy and growth are also summarized. Abelson tyrosine kinase (Abl), c-Src, focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (PYK2), protein tyrosine phosphatase-proline, glutamate, serine and threonine sequence protein (PTP-PEST) and SHP-2 have been documented to coordinate the phosphorylation and dephosphorylation of CAS. The downstream signaling partners of CAS in the context of cell motility, hypertrophy, survival and growth are also discussed. These new findings establish the important role of CAS in the modulation of vascular smooth muscle functions. Furthermore, the upstream regulators of CAS may be new biologic targets for the development of more effective and specific treatment of cardiovascular diseases such as hypertension.
Issue Date: 05 December 2008
 Cite this article:   
TANG Dale. Crk-associated substrate, vascular smooth muscle and hypertension[J]. Front. Med., 2008, 2(4): 323-331.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-008-0062-6
https://academic.hep.com.cn/fmd/EN/Y2008/V2/I4/323
1 O'Neill G M, Fashena S J, Golemis E A . Integrin signalling: a new Cas(t) of characters entersthe stage. Trends Cell Biol, 2000, 10(3): 111–119.
doi:10.1016/S0962-8924(99)01714-6
2 Defilippi P, Di S P, Cabodi S . p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol, 2006, 16(5): 257–263.
doi:10.1016/j.tcb.2006.03.003
3 Anfinogenova Y, Wang R, Li Q F, Spinelli A M, Tang D D . Abl silencing inhibits CAS-mediatedprocess and constriction in resistance arteries. Circ Res, 2007, 101(4): 420–428.
doi:10.1161/CIRCRESAHA.107.156463
4 Ogden K, Thompson J M, Hickner Z, Huang T, Tang D D, Watts S W . A new signaling paradigm for serotonin: use of Crk-associated substratein arterial contraction. Am J Physiol HeartCirc Physiol, 2006, 291(6): H2857–H2863.
doi:10.1152/ajpheart.00229.2006
5 Tang D D, Tan J . Role of Crk-Associated Substratein the Regulation of Vascular Smooth Muscle Contraction. Hypertension, 2003, 42: 858–863.
doi:10.1161/01.HYP.0000085333.76141.33
6 Tang D D, Tan J . Downregulation of profilinwith antisense oligodeoxynucleotides inhibits force development duringstimulation of smooth muscle. Am J PhysiolHeart Circ Physiol, 2003, 285: H1528–H1536
7 Kanner S B, Reynolds A B, Wang H C, Vines R R, Parsons J T . The SH2 and SH3 domains of pp60src directstable association with tyrosine phosphorylated proteins p130 andp110. EMBO J, 1991, 10(7): 1689–1698
8 Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y, Hirai H . A novel signaling molecule, p130, forms stable complexesin vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependentmanner. EMBO J, 1994, 13(16): 3748–3756
9 Singh M K, Dadke D, Nicolas E, Serebriiskii I G, Apostolou S, Canutescu A, Egleston B L, Golemis E A . A novel Cas family member,HEPL, regulates FAK and cell spreading. Mol Biol Cell, 2008, 19(4): 1627–1636.
doi:10.1091/mbc.E07-09-0953
10 Tang D D, Anfinogenova Y . Physiologic properties andregulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmaco Ther, 2008, 13(2): 130–140.
doi:10.1177/1074248407313737
11 Wang R, Li Q F, Anfinogenova Y, Tang D D . Dissociationof Crk-associated substrate from the vimentin network is regulatedby p21-activated kinase on ACh activation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol, 2007, 292(1): L240–L248.
doi:10.1152/ajplung.00199.2006
12 Li Q F, Spinelli A M, Wang R, Anfinogenova Y, Singer H A, Tang D D . Critical role of vimentin phosphorylation at Ser-56 byp21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem, 2006, 281(45): 34716–34724.
doi:10.1074/jbc.M607715200
13 Tang D D, Gunst S J . The small GTPase Cdc42 regulatesactin polymerization and tension development during contractile stimulationof smooth muscle. J Biol Chem, 2004, 279(50): 51722–51728.
doi:10.1074/jbc.M408351200
14 Tang D D, Zhang W, Gunst S J . The adapter protein CrkII regulates neuronal Wiskott-Aldrichsyndrome protein, actin polymerization, and tension development duringcontractile stimulation of smooth muscle. J Biol Chem, 2005, 280(24): 23380–23389.
doi:10.1074/jbc.M413390200
15 Shin N Y, Dise R S, Schneider-Mergener J, Ritchie M D, Kilkenny D M, Hanks S K . Subsets of the major tyrosine phosphorylation sites inCrk-associated substrate (CAS) are sufficient to promote cell migration. J Biol Chem, 2004, 279(37): 38331–38337.
doi:10.1074/jbc.M404675200
16 Takahashi T, Kawahara Y, Taniguchi T, Yokoyama M . Tyrosinephosphorylation and association of p130Cas and c-Crk II by ANG IIin vascular smooth muscle cells. Am J Physiol, 1998, 274(4 Pt 2): H1059–H1065
17 Somlyo A V, Khromov A S, Webb M R, Ferenczi M A, Trentham D R, He Z H, Sheng S, Shao Z, Somlyo A P . Smooth muscle myosin: regulation and properties. Philos Trans R Soc Lond B Biol Sci, 2004, 359(1452): 1921–1930.
doi:10.1098/rstb.2004.1562
18 Zhang W, Wu Y, Du L, Tang D D, Gunst S J . Activation of the Arp2/3 complex by N-WASpis required for actin polymerization and contraction in smooth muscle. Am J Physiol Cell Physiol, 2005, 288(5): C1145–C1160.
doi:10.1152/ajpcell.00387.2004
19 Barany M, Barron J T, Gu L, Barany K . Exchange ofthe actin-bound nucleotide in intact arterial smooth muscle. J Biol Chem, 2001, 276(51): 48398–48403
20 Chen X, Pavlish K, Zhang H Y, Benoit J N . Effects ofchronic portal hypertension on agonist-induced actin polymerizationin small mesenteric arteries. Am J PhysiolHeart Circ Physiol, 2006, 290(5): H1915–H1921.
doi:10.1152/ajpheart.00643.2005
21 Meeks M K, Ripley M L, Jin Z, Rembold C M . Heat shock protein 20-mediated force suppression in forskolin-relaxedswine carotid artery. Am J Physiol CellPhysiol, 2005, 288(3): C633–C639.
doi:10.1152/ajpcell.00269.2004
22 Tang D D, Gunst S J . Selected contribution: rolesof focal adhesion kinase and paxillin in the mechanosensitive regulationof myosin phosphorylation in smooth muscle. J Appl Physiol, 2001, 91(3): 1452–1459
23 Tang D D, Gunst S J . Depletion of focal adhesionkinase by antisense depresses contractile activation of smooth muscle. Am J Physiol Cell Physiol, 2001, 280(4): C874–C883
24 Tang D D, Turner C E, Gunst S J . Expression of non-phosphorylatable paxillin mutants incanine tracheal smooth muscle inhibits tension development. J Physiol, 2003, 553(1): 21–35.
doi:10.1113/jphysiol.2003.045047
25 Kyaw M, Yoshizumi M, Tsuchiya K, Kagami S, Izawa Y, Fujita Y, Ali N, Kanematsu Y, Toida K, Ishimura K, Tamaki T . Srcand Cas are essentially but differentially involved in angiotensinII-stimulated migration of vascular smooth muscle cells via extracellularsignal-regulated kinase 1/2 and c-Jun NH2-terminal kinase activation. Mol Pharmacol, 2004, 65(4): 832–841.
doi:10.1124/mol.65.4.832
26 Ojaniemi M, Vuori K . Epidermal growth factor modulatestyrosine phosphorylation of p130Cas. Involvement of phosphatidylinositol3′-kinase and actin cytoskeleton. J Biol Chem, 1997, 272(41): 25993–25998.
doi:10.1074/jbc.272.41.25993
27 Cho S Y, Klemke R L . Purification of pseudopodiafrom polarized cells reveals redistribution and activation of Racthrough assembly of a CAS/Crk scaffold. J Cell Biol, 2002, 156(4): 725–736.
doi:10.1083/jcb.200111032
28 Chodniewicz D, Klemke R L . Regulation of integrin-mediatedcellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta, 2004, 1692(2–3): 63–76
29 Pollard T D . Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct, 2007, 36: 451–477.
doi:10.1146/annurev.biophys.35.040405.101936
30 Gunst S J, Tang D D . The contractile apparatusand mechanical properties of airway smooth muscle. Eur Respir J, 2000, 15(3): 600–616.
doi:10.1034/j.1399-3003.2000.15.29.x
31 Gunst S J, Tang D D, Opazo S A . Cytoskeletal remodeling of the airway smooth muscle cell:a mechanism for adaptation to mechanical forces in the lung. Respir Physiol Neurobiol 2003, 137(2–3): 151–168
32 Gerthoffer W T . Actin cytoskeletal dynamics in smooth muscle contraction. Can J Physiol Pharmacol, 2005, 83(10): 851–856.
doi:10.1139/y05-088
33 Gerthoffer W T, Gunst S J . Invited review: focal adhesionand small heat shock proteins in the regulation of actin remodelingand contractility in smooth muscle. J ApplPhysiol, 2001, 91(2): 963–972
34 Kiselar J G, Mahaffy R, Pollard T D, Almo S C, Chance M R . Visualizing Arp2/3 complex activationmediated by binding of ATP and WASp using structural mass spectrometry. Proc Natl Acad Sci U S A, 2007, 104(5): 1552–1557.
doi:10.1073/pnas.0605380104
35 Langevin H M, Churchill D L, Cipolla M J . Mechanical signaling through connective tissue: a mechanismfor the therapeutic effect of acupuncture. FASEB J, 2001, 15(12): 2275–2282.
doi:10.1096/fj.01-0015hyp
36 Herrera A M, McParland B E, Bienkowska A, Tait R, Pare P D, Seow C Y . ‘Sarcomeres' of smooth muscle: functional characteristics andultrastructural evidence. J Cell Sci, 2005, 118 (Pt 11): 2381–2392.
doi:10.1242/jcs.02368
37 Herrera A M, Martinez E C, Seow C Y . Electron microscopic study of actin polymerization inairway smooth muscle. Am J Physiol LungCell Mol Physiol, 2004, 286(6): L1161–L1168.
doi:10.1152/ajplung.00298.2003
38 Wang L, Pare P D, Seow C Y . Effects of length oscillation on the subsequent forcedevelopment in swine tracheal smooth muscle. J Appl Physiol, 2000, 88(6): 2246–2250
39 Murphy R A, Rembold C M . The latch-bridge hypothesisof smooth muscle contraction. Can J PhysiolPharmacol, 2005, 83(10): 857–864.
doi:10.1139/y05-090
40 Rembold C M . Force suppression and the crossbridge cycle in swine carotid artery. Am J Physiol Cell Physiol, 2007, 293(3): C1003–C1009.
doi:10.1152/ajpcell.00091.2007
41 Rembold C M, Tejani A D, Ripley M L, Han S . Paxillin phosphorylation,actin polymerization, noise temperature, and the sustained phase ofswine carotid artery contraction. Am JPhysiol Cell Physiol, 2007, 293(3): C993–C1002.
doi:10.1152/ajpcell.00090.2007
42 Opazo S A, Zhang W, Wu Y, Turner C E, Tang D D, Gunst S J . Tension development during contractile stimulation of smooth musclerequires recruitment of paxillin and vinculin to the membrane. Am J Physiol Cell Physiol, 2004, 286(2): C433–C447.
doi:10.1152/ajpcell.00030.2003
43 Tang D D . Invited review: intermediate filaments in smooth muscle. Am J Physiol Cell Physiol, 2008, 294(4): C869–C878.
doi:10.1152/ajpcell.00154.2007
44 Wang R, Li Q, Tang D D . Role of vimentin in smooth muscle force development. Am J Physiol Cell Physiol, 2006, 291(3): C483–C489.
doi:10.1152/ajpcell.00097.2006
45 Tang D D, Bai Y, Gunst S J . Silencing of p21-activated kinase attenuates vimentinphosphorylation on Ser-56 and reorientation of the vimentin networkduring stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J, 2005, 388 (Pt 3): 773–783
46 Chan W, Kozma R, Yasui Y, Inagaki M, Leung T, Manser E, Lim L . Vimentin intermediatefilament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur J Cell Biol, 2002, 81(12): 692–701.
doi:10.1078/0171-9335-00281
47 Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M . Phosphorylationand reorganization of vimentin by p21-activated kinase (PAK). Genes Cells, 2002, 7(2): 91–97.
doi:10.1046/j.1356-9597.2001.00504.x
48 Sin W C, Chen X Q, Leung T, Lim L . RhoA-bindingkinase alpha translocation is facilitated by the collapse of the vimentinintermediate filament network. Mol CellBiol, 1998, 18(11): 6325–6339
49 Marganski W A, Gangopadhyay S S, Je H D, Gallant C, Morgan K G . Targeting of a novel Ca+2/calmodulin-dependentprotein kinase II is essential for extracellular signal-regulatedkinase-mediated signaling in differentiated smooth muscle cells. Circ Res, 2005, 97(6): 541–549.
doi:10.1161/01.RES.0000182630.29093.0d
50 Gerthoffer W T . Mechanisms of vascular smooth muscle cell migration. Circ Res, 2007, 100(5): 607–621.
doi:10.1161/01.RES.0000258492.96097.47
51 Honda H, Nakamoto T, Sakai R, Hirai H . p130(Cas),an assembling molecule of actin filaments, promotes cell movement,cell migration, and cell spreading in fibroblasts. Biochem Biophys Res Commun, 1999, 262(1): 25–30.
doi:10.1006/bbrc.1999.1162
52 Lin Y, Ceacareanu A C, Hassid A . Nitric oxide-induced inhibition of aortic smooth musclecell motility: role of PTP-PEST and adaptor proteins p130cas and Crk. Am J Physiol Heart Circ Physiol, 2003, 285(2): H710–H721
53 Ceacareanu A C, Ceacareanu B, Zhuang D, Chang Y, Ray R M, Desai L, Chapman K E, Waters C M, Hassid A . Nitric oxideattenuates IGF-I-induced aortic smooth muscle cell motility by decreasingRac1 activity: essential role of PTP-PEST and p130cas. Am J Physiol Cell Physiol, 2006, 290(4): C1263–C1270.
doi:10.1152/ajpcell.00241.2005
54 Ishida T, Ishida M, Suero J, Takahashi M, Berk B C . Agonist-stimulated cytoskeletalreorganization and signal transduction at focal adhesions in vascularsmooth muscle cells require c-Src. J ClinInvest, 1999, 103(6): 789–797.
doi:10.1172/JCI4189
55 Rocic P, Govindarajan G, Sabri A, Lucchesi P A . A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinaseby ANG II in vascular smooth muscle. AmJ Physiol Cell Physiol, 2001, 280(1): C90–C99
56 Lawrence J C Jr, Brunn G J . Insulin signaling and thecontrol of PHAS-I phosphorylation. ProgMol Subcell Biol, 2001, 26: 1–31
57 Mehta P K, Griendling K K . Angiotensin II cell signaling:physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol, 2007, 292(1): C82–C97.
doi:10.1152/ajpcell.00287.2006
58 Mayer B J, Hirai H, Sakai R . Evidence that SH2 domains promote processive phosphorylationby protein-tyrosine kinases. Curr Biol, 1995, 5(3): 296–305.
doi:10.1016/S0960-9822(95)00060-1
59 Ushio-Fukai M, Zuo L, Ikeda S, Tojo T, Patrushev N A, Alexander R W . cAbl tyrosine kinase mediates reactive oxygen species-and caveolin-dependent AT1 receptor signaling in vascular smooth muscle:role in vascular hypertrophy. Circ Res, 2005, 97(8): 829–836.
doi:10.1161/01.RES.0000185322.46009.F5
60 Wang J Y . Controlling Abl: auto-inhibition and co-inhibition? Nat Cell Biol, 2004, 6(1): 3–7.
doi:10.1038/ncb0104-3
61 Hoeper M M, Rubin L J . Update in pulmonary hypertension2005. Am J Respir Crit Care Med, 2006, 173(5): 499–505.
doi:10.1164/rccm.2512003
62 Ghofrani H A, Seeger W, Grimminger F . Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med, 2005, 353(13): 1412–1413.
doi:10.1056/NEJMc051946
63 Tang D, Mehta D, Gunst S J . Mechanosensitive tyrosine phosphorylation of paxillinand focal adhesion kinase in tracheal smooth muscle. Am J Physiol, 1999, 276(1 Pt 1): C250–C258
64 Parsons J T . Focal adhesion kinase: the first ten years. J Cell Sci, 2003, 116(Pt 8): 1409–1416.
doi:10.1242/jcs.00373
65 Azar Z M, Mehdi M Z, Srivastava A K . Activation of insulin-like growth factor type-1 receptoris required for H2O2-induced PKB phosphorylation in vascular smooth muscle cells. Can J Physiol Pharmacol, 2006, 84(7): 777–786.
doi:10.1139/Y06-024
66 Angelucci A, Bologna M . Targeting vascular cell migrationas a strategy for blocking angiogenesis: the central role of focaladhesion protein tyrosine kinase family. Curr Pharm Des, 2007, 13(21): 2129–2145.
doi:10.2174/138161207781039643
67 Ruest P J, Shin N Y, Polte T R, Zhang X, Hanks S K . Mechanisms of CAS substrate domain tyrosinephosphorylation by FAK and Src. Mol CellBiol, 2001, 21(22): 7641–7652.
doi:10.1128/MCB.21.22.7641-7652.2001
68 Vuori K, Hirai H, Aizawa S, Ruoslahti E . Introductionof p130cas signaling complex formation upon integrin-mediated celladhesion: a role for Src family kinases. Mol Cell Biol, 1996, 16(6): 2606–2613
69 Nakamura I, Jimi E, Duong L T, Sasaki T, Takahashi N, Rodan G A, Suda T . Tyrosine phosphorylationof p130Cas is involved in actin organization in osteoclasts. J Biol Chem, 1998, 273(18): 11144–11149.
doi:10.1074/jbc.273.18.11144
70 Fernstrom K, Farmer P, Ali M S . Cytoskeletal remodeling in vascular smooth muscle cellsin response to angiotensin II-induced activation of the SHP-2 tyrosinephosphatase. J Cell Physiol, 2005, 205(3): 402–413.
doi:10.1002/jcp.20436
71 Pratt S J, Epple H, Ward M, Feng Y, Braga V M, Longmore G D . The LIM protein Ajuba influences p130Cas localization and Rac1 activityduring cell migration. J Cell Biol, 2005, 168(5): 813–824.
doi:10.1083/jcb.200406083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed