|
|
Histone variants: critical determinants in tumour heterogeneity |
Tao Wang1,2, Florent Chuffart1, Ekaterina Bourova-Flin1, Jin Wang2, Jianqing Mi2, Sophie Rousseaux1, Saadi Khochbin1( ) |
1. CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, 38706, Grenoble, France 2. State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
|
|
Abstract Malignant cell transformation could be considered as a series of cell reprogramming events driven by oncogenic transcription factors and upstream signalling pathways. Chromatin plasticity and dynamics are critical determinants in the control of cell reprograming. An increase in chromatin dynamics could therefore constitute an essential step in driving oncogenesis and in generating tumour cell heterogeneity, which is indispensable for the selection of aggressive properties, including the ability of cells to disseminate and acquire resistance to treatments. Histone supply and dosage, as well as histone variants, are the best-known regulators of chromatin dynamics. By facilitating cell reprogramming, histone under-dosage and histone variants should also be crucial in cell transformation and tumour metastasis. Here we summarize and discuss our knowledge of the role of histone supply and histone variants in chromatin dynamics and their ability to enhance oncogenic cell reprogramming and tumour heterogeneity.
|
Keywords
cancer-testis
TH2B
TH2A
H1T
H1.0
H1F0
linker histones
|
Corresponding Author(s):
Saadi Khochbin
|
Just Accepted Date: 28 August 2018
Online First Date: 09 October 2018
Issue Date: 05 June 2019
|
|
1 |
Y Assenov, D Brocks, C Gerhäuser. Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 2018; 51: 12–21
https://doi.org/10.1016/j.semcancer.2018.01.010
pmid: 29366906
|
2 |
T Mazor, A Pankov, JS Song, JF Costello. Intratumoral heterogeneity of the epigenome. Cancer Cell 2016; 29(4): 440–451
https://doi.org/10.1016/j.ccell.2016.03.009
pmid: 27070699
|
3 |
D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
pmid: 21376230
|
4 |
K Takahashi, S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024
pmid: 16904174
|
5 |
S Ecker, V Pancaldi, A Valencia, S Beck, DS Paul. Epigenetic and transcriptional variability shape phenotypic plasticity. BioEssays 2018; 40(2): 1700148
https://doi.org/10.1002/bies.201700148
pmid: 29251357
|
6 |
A Puisieux, RM Pommier, AP Morel, F Lavial. Cellular pliancy and the multistep process of tumorigenesis. Cancer Cell 2018; 33(2): 164–172
https://doi.org/10.1016/j.ccell.2018.01.007
pmid: 29438693
|
7 |
A Decottignies, F d’Adda di Fagagna. Epigenetic alterations associated with cellular senescence: a barrier against tumorigenesis or a red carpet for cancer? Semin Cancer Biol 2011; 21(6): 360–366
https://doi.org/10.1016/j.semcancer.2011.09.003
pmid: 21946622
|
8 |
DD De Carvalho, JS You, PA Jones. DNA methylation and cellular reprogramming. Trends Cell Biol 2010; 20(10): 609–617
https://doi.org/10.1016/j.tcb.2010.08.003
pmid: 20810283
|
9 |
JS Becker, D Nicetto, KS Zaret. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 2016; 32(1): 29–41
https://doi.org/10.1016/j.tig.2015.11.001
pmid: 26675384
|
10 |
A Burton, ME Torres-Padilla. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 2014; 15(11): 723–734
https://doi.org/10.1038/nrm3885
pmid: 25303116
|
11 |
E Apostolou, K Hochedlinger. Chromatin dynamics during cellular reprogramming. Nature 2013; 502(7472): 462–471
https://doi.org/10.1038/nature12749
pmid: 24153299
|
12 |
S Cheloufi, K Hochedlinger. Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Curr Opin Genet Dev 2017; 46: 83–94
https://doi.org/10.1016/j.gde.2017.06.004
pmid: 28692904
|
13 |
MH Hauer, SM Gasser. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 2017; 31(22): 2204–2221
https://doi.org/10.1101/gad.307702.117
pmid: 29284710
|
14 |
N Hoghoughi, S Barral, A Vargas, S Rousseaux, S Khochbin. Histone variants: essential actors in male genome programming. J Biochem 2018; 163(2): 97–103
https://doi.org/10.1093/jb/mvx079
pmid: 29165574
|
15 |
X Gaume, ME Torres-Padilla. Regulation of reprogramming and cellular plasticity through histone exchange and histone variant incorporation. Cold Spring Harb Symp Quant Biol 2015; 80: 165–175
https://doi.org/10.1101/sqb.2015.80.027458
pmid: 26582788
|
16 |
P Yang, W Wu, TS Macfarlan. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays 2015; 37(1): 52–59
https://doi.org/10.1002/bies.201400072
pmid: 25328107
|
17 |
ZA Gurard-Levin, JP Quivy, G Almouzni. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2014; 83(1): 487–517
https://doi.org/10.1146/annurev-biochem-060713-035536
pmid: 24905786
|
18 |
S Cheloufi, U Elling, B Hopfgartner, YL Jung, J Murn, M Ninova, M Hubmann, AI Badeaux, C Euong Ang, D Tenen, DJ Wesche, N Abazova, M Hogue, N Tasdemir, J Brumbaugh, P Rathert, J Jude, F Ferrari, A Blanco, M Fellner, D Wenzel, M Zinner, SE Vidal, O Bell, M Stadtfeld, HY Chang, G Almouzni, SW Lowe, J Rinn, M Wernig, A Aravin, Y Shi, PJ Park, JM Penninger, J Zuber, K Hochedlinger. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2015; 528(7581): 218–224
https://doi.org/10.1038/nature15749
pmid: 26659182
|
19 |
T Ishiuchi, R Enriquez-Gasca, E Mizutani, A Bošković, C Ziegler-Birling, D Rodriguez-Terrones, T Wakayama, JM Vaquerizas, ME Torres-Padilla. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 2015; 22(9): 662–671
https://doi.org/10.1038/nsmb.3066
pmid: 26237512
|
20 |
C Rivera-Casas, R Gonzalez-Romero, MS Cheema, J Ausió, JM Eirín-López. The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin. Epigenetics 2016; 11(6): 415–425
https://doi.org/10.1080/15592294.2016.1172161
pmid: 27082816
|
21 |
TA Soboleva, M Nekrasov, A Pahwa, R Williams, GA Huttley, DJ Tremethick. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat Struct Mol Biol 2011; 19(1): 25–30
https://doi.org/10.1038/nsmb.2161
pmid: 22139013
|
22 |
S Barral, Y Morozumi, H Tanaka, E Montellier, J Govin, M de Dieuleveult, G Charbonnier, Y Couté, D Puthier, T Buchou, F Boussouar, T Urahama, F Fenaille, S Curtet, P Héry, N Fernandez-Nunez, H Shiota, M Gérard, S Rousseaux, H Kurumizaka, S Khochbin. Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol Cell 2017; 66(1): 89–101.e8
https://doi.org/10.1016/j.molcel.2017.02.025
pmid: 28366643
|
23 |
V Pasque, A Gillich, N Garrett, JB Gurdon. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 2011; 30(12): 2373–2387
https://doi.org/10.1038/emboj.2011.144
pmid: 21552206
|
24 |
T Shinagawa, T Takagi, D Tsukamoto, C Tomaru, LM Huynh, P Sivaraman, T Kumarevel, K Inoue, R Nakato, Y Katou, T Sado, S Takahashi, A Ogura, K Shirahige, S Ishii. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2014; 14(2): 217–227
https://doi.org/10.1016/j.stem.2013.12.015
pmid: 24506885
|
25 |
D Quénet. Histone variants and disease. Int Rev Cell Mol Biol 2018; 335: 1–39
https://doi.org/10.1016/bs.ircmb.2017.07.006
pmid: 29305010
|
26 |
S Rousseaux, A Debernardi, B Jacquiau, AL Vitte, A Vesin, H Nagy-Mignotte, D Moro-Sibilot, PY Brichon, S Lantuejoul, P Hainaut, J Laffaire, A de Reyniès, DG Beer, JF Timsit, C Brambilla, E Brambilla, S Khochbin. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med 2013; 5(186): 186ra66
https://doi.org/10.1126/scitranslmed.3005723
pmid: 23698379
|
27 |
J Govin, C Caron, S Rousseaux, S Khochbin. Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 2005; 30(7): 357–359
https://doi.org/10.1016/j.tibs.2005.05.001
pmid: 15922600
|
28 |
F Mohammad, K Helin. Oncohistones: drivers of pediatric cancers. Genes Dev 2017; 31(23-24): 2313–2324
https://doi.org/10.1101/gad.309013.117
pmid: 29352018
|
29 |
J Gaucher, N Reynoird, E Montellier, F Boussouar, S Rousseaux, S Khochbin. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 2010; 277(3): 599–604
https://doi.org/10.1111/j.1742-4658.2009.07504.x
pmid: 20015078
|
30 |
J Ueda, A Harada, T Urahama, S Machida, K Maehara, M Hada, Y Makino, J Nogami, N Horikoshi, A Osakabe, H Taguchi, H Tanaka, H Tachiwana, T Yao, M Yamada, T Iwamoto, A Isotani, M Ikawa, T Tachibana, Y Okada, H Kimura, Y Ohkawa, H Kurumizaka, K Yamagata. Testis-specific histone variant H3t gene is essential for entry into spermatogenesis. Cell Reports 2017; 18(3): 593–600
https://doi.org/10.1016/j.celrep.2016.12.065
pmid: 28099840
|
31 |
H Tachiwana, W Kagawa, A Osakabe, K Kawaguchi, T Shiga, Y Hayashi-Takanaka, H Kimura, H Kurumizaka. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci USA 2010; 107(23): 10454–10459
https://doi.org/10.1073/pnas.1003064107
pmid: 20498094
|
32 |
J Zhou, JY Fan, D Rangasamy, DJ Tremethick. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 2007; 14(11): 1070–1076
https://doi.org/10.1038/nsmb1323
pmid: 17965724
|
33 |
E Montellier, F Boussouar, S Rousseaux, K Zhang, T Buchou, F Fenaille, H Shiota, A Debernardi, P Héry, S Curtet, M Jamshidikia, S Barral, H Holota, A Bergon, F Lopez, P Guardiola, K Pernet, J Imbert, C Petosa, M Tan, Y Zhao, M Gérard, S Khochbin. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 2013; 27(15): 1680–1692
https://doi.org/10.1101/gad.220095.113
pmid: 23884607
|
34 |
T Shinagawa, LM Huynh, T Takagi, D Tsukamoto, C Tomaru, HG Kwak, N Dohmae, J Noguchi, S Ishii. Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development 2015; 142(7): 1287–1292
https://doi.org/10.1242/dev.121830
pmid: 25742800
|
35 |
D Iuso, M Czernik, P Toschi, A Fidanza, F Zacchini, R Feil, S Curtet, T Buchou, H Shiota, S Khochbin, GE Ptak, P Loi. Exogenous expression of human protamine 1 (hPrm1) remodels fibroblast nuclei into spermatid-like structures. Cell Reports 2015; 13(9): 1765–1771
https://doi.org/10.1016/j.celrep.2015.10.066
pmid: 26628361
|
36 |
JV Chodaparambil, AJ Barbera, X Lu, KM Kaye, JC Hansen, K Luger. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat Struct Mol Biol 2007; 14(11): 1105–1107
https://doi.org/10.1038/nsmb1334
pmid: 17965723
|
37 |
K Luger, AW Mäder, RK Richmond, DF Sargent, TJ Richmond. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389(6648): 251–260
https://doi.org/10.1038/38444
pmid: 9305837
|
38 |
A Molaro, JM Young, HS Malik. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res 2018; 28(4): 460–473
https://doi.org/10.1101/gr.229799.117
pmid: 29549088
|
39 |
Y Bao, K Konesky, YJ Park, S Rosu, PN Dyer, D Rangasamy, DJ Tremethick, PJ Laybourn, K Luger. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 2004; 23(16): 3314–3324
https://doi.org/10.1038/sj.emboj.7600316
pmid: 15257289
|
40 |
SH Syed, M Boulard, MS Shukla, T Gautier, A Travers, J Bednar, C Faivre-Moskalenko, S Dimitrov, D Angelov. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res 2009; 37(14): 4684–4695
https://doi.org/10.1093/nar/gkp473
pmid: 19506029
|
41 |
C Winkler, DS Steingrube, W Altermann, G Schlaf, D Max, S Kewitz, A Emmer, M Kornhuber, U Banning-Eichenseer, MS Staege. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother 2012; 61(10): 1769–1779
https://doi.org/10.1007/s00262-012-1239-z
pmid: 22419371
|
42 |
V Sansoni, CS Casas-Delucchi, M Rajan, A Schmidt, C Bönisch, AW Thomae, MS Staege, SB Hake, MC Cardoso, A Imhof. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res 2014; 42(10): 6405–6420
https://doi.org/10.1093/nar/gku303
pmid: 24753410
|
43 |
S Khochbin. Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 2001; 271(1): 1–12
https://doi.org/10.1016/S0378-1119(01)00495-4
pmid: 11410360
|
44 |
M Peretti, S Khochbin. The evolution of the differentiation-specific histone H1 gene basal promoter. J Mol Evol 1997; 44(2): 128–134
https://doi.org/10.1007/PL00006129
pmid: 9069173
|
45 |
D Rousseau, S Khochbin, C Gorka, JJ Lawrence. Regulation of histone H1(0) accumulation during induced differentiation of murine erythroleukemia cells. J Mol Biol 1991; 217(1): 85–92
https://doi.org/10.1016/0022-2836(91)90613-B
pmid: 1988682
|
46 |
D Rousseau, S Khochbin, C Gorka, JJ Lawrence. Induction of H1(0)-gene expression in B16 murine melanoma cells. Eur J Biochem 1992; 208(3): 775–779
https://doi.org/10.1111/j.1432-1033.1992.tb17247.x
pmid: 1396682
|
47 |
S Khochbin, AP Wolffe. Developmental regulation and butyrate-inducible transcription of the Xenopus histone H1(0) promoter. Gene 1993; 128(2): 173–180
https://doi.org/10.1016/0378-1119(93)90560-P
pmid: 8514185
|
48 |
D Seigneurin, D Grunwald, JJ Lawrence, S Khochbin. Developmentally regulated chromatin acetylation and histone H1(0) accumulation. Int J Dev Biol 1995; 39(4): 597–603
pmid: 8619958
|
49 |
D Grunwald, JJ Lawrence, S Khochbin. Accumulation of histone H1(0) during early Xenopus laevis development. Exp Cell Res 1995; 218(2): 586–595
https://doi.org/10.1006/excr.1995.1196
pmid: 7796895
|
50 |
A Izzo, C Ziegler-Birling, PWS Hill, L Brondani, P Hajkova, ME Torres-Padilla, R Schneider. Dynamic changes in H1 subtype composition during epigenetic reprogramming. J Cell Biol 2017; jcb.201611012
https://doi.org/10.1083/jcb.201611012
pmid: 28794128
|
51 |
CM Torres, A Biran, MJ Burney, H Patel, T Henser-Brownhill, AS Cohen, Y Li, R Ben-Hamo, E Nye, B Spencer-Dene, P Chakravarty, S Efroni, N Matthews, T Misteli, E Meshorer, P Scaffidi. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 2016; 353(6307): aaf1644
https://doi.org/10.1126/science.aaf1644
pmid: 27708074
|
52 |
C Gorka, JJ Lawrence, S Khochbin. Variation of H1(0) content throughout the cell cycle in regenerating rat liver. Exp Cell Res 1995; 217(2): 528–533
https://doi.org/10.1006/excr.1995.1118
pmid: 7698253
|
53 |
S Khochbin, AP Wolffe. Developmentally regulated expression of linker-histone variants in vertebrates. Eur J Biochem 1994; 225(2): 501–510
https://doi.org/10.1111/j.1432-1033.1994.00501.x
pmid: 7957165
|
54 |
D Grunwald, S Khochbin, JJ Lawrence. Cell cycle-related accumulation of H1(0) mRNA: induction in murine erythroleukemia cells. Exp Cell Res 1991; 194(2): 174–179
https://doi.org/10.1016/0014-4827(91)90350-4
pmid: 2026174
|
55 |
MP Brocard, S Triebe, M Peretti, D Doenecke, S Khochbin. Characterization of the two H1(zero)-encoding genes from Xenopus laevis. Gene 1997; 189(1): 127–134
https://doi.org/10.1016/S0378-1119(96)00845-1
pmid: 9161423
|
56 |
J Lonsdale, J Thomas, M Salvatore, R Phillips, E Lo, S Shad, R Hasz, G Walters, F Garcia, N Young, B Foster, M Moser, E Karasik, B Gillard, K Ramsey, S Sullivan, J Bridge, H Magazine, J Syron, J Fleming, L Siminoff, H Traino, M Mosavel, L Barker, S Jewell, D Rohrer, D Maxim, D Filkins, P Harbach, E Cortadillo, B Berghuis, L Turner, E Hudson, K Feenstra, L Sobin, J Robb, P Branton, G Korzeniewski, C Shive, D Tabor, L Qi, K Groch, S Nampally, S Buia, A Zimmerman, A Smith, R Burges, K Robinson, K Valentino, D Bradbury, M Cosentino, N Diaz-Mayoral, M Kennedy, T Engel, P Williams, K Erickson, K Ardlie, W Winckler, G Getz, D DeLuca, D MacArthur, M Kellis, A Thomson, T Young, E Gelfand, M Donovan, Y Meng, G Grant, D Mash, Y Marcus, M Basile, J Liu, J Zhu, Z Tu, NJ Cox, DL Nicolae, ER Gamazon, HK Im, A Konkashbaev, J Pritchard, M Stevens, T Flutre, X Wen, ET Dermitzakis, T Lappalainen, R Guigo, J Monlong, M Sammeth, D Koller, A Battle, S Mostafavi, M McCarthy, M Rivas, J Maller, I Rusyn, A Nobel, F Wright, A Shabalin, M Feolo, N Sharopova, A Sturcke, J Paschal, JM Anderson, EL Wilder, LK Derr, ED Green, JP Struewing, G Temple, S Volpi, JT Boyer, EJ Thomson, MS Guyer, C Ng, A Abdallah, D Colantuoni, TR Insel, SE Koester, AR Little, PK Bender, T Lehner, Y Yao, CC Compton, JB Vaught, S Sawyer, NC Lockhart, J Demchok, HF Moore; GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013; 45(6): 580–585
https://doi.org/10.1038/ng.2653
pmid: 23715323
|
57 |
L Peng, XW Bian, DK Li, C Xu, GM Wang, QY Xia, Q Xiong. Large-scale RNA-seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Sci Rep 2015; 5(1): 13413
https://doi.org/10.1038/srep13413
pmid: 26292924
|
58 |
D Djureinovic, BM Hallström, M Horie, JSM Mattsson, L La Fleur, L Fagerberg, H Brunnström, C Lindskog, K Madjar, J Rahnenführer, S Ekman, E Ståhle, H Koyi, E Brandén, K Edlund, JG Hengstler, M Lambe, A Saito, J Botling, F Pontén, M Uhlén, P Micke. Profiling cancer testis antigens in non-small-cell lung cancer. JCI Insight 2016; 1(10): e86837
https://doi.org/10.1172/jci.insight.86837
pmid: 27699219
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|