Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (1) : 101-111    https://doi.org/10.1007/s11684-019-0698-4
RESEARCH ARTICLE
Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit
Anqi Chen1,2, Suhua Zhang2, Jixi Li1, Chaoneng Ji1, Jinzhong Chen1(), Chengtao Li2()
1. State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
2. Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Sciences, Ministry of Justice, Shanghai 200063, China
 Download: PDF(2680 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Growing evidence suggests that somatic hypermutational status and programmed cell death-1 overexpression are potential predictive biomarkers indicating treatment benefits from immunotherapy using immune checkpoint inhibitors. However, biomarker-matched trials are still limited, and many of the genomic alterations remain difficult to target. To isolate the potential somatic hypermutational tumor from microsatellite instability low/microsatellite stability (MSI-L/MSS) cases, we employed two commercial kits to determine MSI and forensic short tandem repeat (STR) alternations in 250 gastrointestinal (GI) tumors. Three types of forensic STR alternations, namely, allelic loss, Aadd, and Anew, were identified. 62.4% (156/250) of the patients with GI exhibited STR alternation, including 100% (15/15) and 60% (141/235) of the microsatellite high instability and MSI-L/MSS cases, respectively. 30% (75/250) of the patients exhibited STR instability with more than 26.32% (26.32%–84.21%) STR alternation. The cutoff with 26.32% of the STR alternations covered all 15 MSI cases and suggested that it might be a potential threshold. Given the similar mechanism of the mutations of MSI and forensic STR, the widely used forensic identifier STR kit might provide potential usage for identifying hypermutational status in GI cancers.

Keywords mismatch repair protein deficiency (MMR-D)      microsatellite instability (MSI)      short tandem repeats (STR)      gastrointestinal tumor      hypermutability     
Corresponding Author(s): Jinzhong Chen,Chengtao Li   
Just Accepted Date: 24 June 2019   Online First Date: 01 August 2019    Issue Date: 02 March 2020
 Cite this article:   
Anqi Chen,Suhua Zhang,Jixi Li, et al. Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit[J]. Front. Med., 2020, 14(1): 101-111.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0698-4
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I1/101
Fig.1  MSI analysis of control and tumor DNA samples by using 6-monomorphic mononucleotide repeat loci markers, namely, NR-21, BAT-26, NR-27, BAT-25, NR-24, and MONO-27. (A) MSI positive sample (Sample No. 48). (B) MSI negative sample (Sample No. 237). The vertical and horizontal axes refer to allele sizes and fluorescence intensity, respectively.
Fig.2  Electropherogram of the STR abnormalities. (A) Electropherogram of L at locus D8S1179 (Sample No. 130). Upper panel, reference DNA showing a profile of alleles of 13 and 14; lower panel, partial loss of allele 14. (B) Electropherogram of Aadd at locus D16S539 (Sample No. 106). Upper panel, reference DNA showing a profile of alleles of 10 and 12; lower panel, additional allele 13. (C) Electropherogram of Anew at locus D18S51 (Sample No. 165). Upper panel, reference DNA showing a profile of alleles of 15 and 16; lower panel, new alleles of 13 and 14. The vertical and horizontal axes refer to allele sizes and fluorescence intensity, respectively.
Fig.3  STR analysis of control and tumor DNA of an MSI-positive sample by using 19 autosomal STR markers (Sample No. 48). The vertical and horizontal axes refer to allele sizes and fluorescence intensity, respectively.
MSI status Caner type Total
GC (n = 121) CRC (n = 129)
MSS 109 122 231
MSI-L 3 1 4
MSI-H 9 6 15 (6%)
Total MSI 12 7 19
Tab.1  Frequency of MSI in 250 gastrointestinal cancer samples
Sample No. MSI STR
Mutation No. Status Mutation No. Alteration rate
021 6 MSI-H 15 78.95%
038 2 MSI-H 5 26.32%
043 1 MSI-L 9 47.37%
048 6 MSI-H 7 36.84%
056 6 MSI-H 16 84.21%
106 6 MSI-H 14 73.68%
108 5 MSI-H 10 55.56%
130 6 MSI-H 13 68.42%
135 6 MSI-H 10 52.63%
165 6 MSI-H 13 68.42%
168 1 MSI-L 10 52.63%
173 6 MSI-H 7 36.84%
178 1 MSI-L 14 73.68%
191 1 MSI-L 6 31.58%
207 5 MSI-H 10 52.63%
213 6 MSI-H 15 78.95%
223 4 MSI-H 8 42.11%
227 5 MSI-H 6 31.58%
236 6 MSI-H 13 68.42%
Tab.2  STR status of all investigated MSI positive samples (n = 19)
STR alternation type Alternation ratea P valuec
CRC GC
L 74.94% (308/411) 69.50% (237/341) 0.0968
Aadd 18.25% (75/411) 28.45% (97/341) 0.0009
Anew 6.81% (28/411) 2.05% (7/341) 0.002
STR alternation type Alternation rateb P valuec
MSI-H MSI-L/MSS
L 11.11% (18/162) 89.32% (527/590) < 0.0001
Aadd 82.72% (134/162) 6.44% (38/590) < 0.0001
Anew 6.17% (10/162) 4.24% (25/590) 0.3009
Tab.3  Difference of STR over the three types of alternation type in all investigated cancer types
MSI loci Alternation rate P value
CRC (n = 129) GC (n = 121)
NR-21 3.88% (5/129) 6.61% (8/121) 0.3322
BAT-26 4.65% (6/129) 6.61% (8/121) 0.5024
NR-27 4.65% (6/129) 6.61% (8/121) 0.5024
BAT-25 5.43% (7/129) 9.09% (11/121) 0.2644
NR-24 3.88% (5/129) 5.79% (7/121) 0.4824
MONO-27 3.10% (4/129) 7.44% (9/121) 0.1237
Tab.4  Difference of MSI over the six loci in all investigated cancer types
Locus STR altered (%)
Totala L Aadd Anew
vWA 21.14% (52/246) 10.57% (26/246) 3.66% (9/246) 6.91% (17/246)
Penta E 22.45% (55/245) 17.14% (42/245) 4.08% (10/245) 1.22% (3/245)
D18S51 32.79% (81/247) 26.32% (65/247) 5.67% (14/247) 0.81% (2/247)
FGA 21.46% (53/247) 15.79% (39/247) 4.86% (12/247) 0.81% (2/247)
Penta D 16.8% (42/250) 13.2% (33/250) 2.8% (7/250) 0.8% (2/250)
D13S317 11.29% (28/248) 8.87% (22/248) 2.02% (5/248) 0.4% (1/248)
D6S1043 15.26% (38/249) 10.84% (27/249) 4.02% (10/249) 0.4% (1/249)
CSF1PO 22.09% (55/249) 18.47% (46/249) 3.61% (9/249) 0% (0/249)
D5S818 18.47% (46/249) 14.06% (35/249) 4.42% (11/249) 0% (0/249)
D8S1179 15.32% (38/248) 11.29% (28/248) 4.03% (10/248) 0% (0/248)
D12S391 14.17% (35/247) 11.34% (28/247) 2.83% (7/247) 0% (0/247)
D2S1338 14.06% (35/249) 10.84% (27/249) 3.21% (8/249) 0% (0/249)
D19S433 13.01% (32/246) 7.32% (18/246) 5.69% (14/246) 0% (0/246)
D21S11 12.45% (31/249) 7.63% (19/249) 4.82% (12/249) 0% (0/249)
D16S539 12% (30/250) 9.6% (24/250) 2.4% (6/250) 0% (0/250)
D7S820 11.65% (29/249) 7.23% (18/249) 4.42% (11/249) 0% (0/249)
D3S1358 10.8% (27/250) 6.8% (17/250) 4% (10/250) 0% (0/250)
TH01 8.87% (22/248) 7.66% (19/248) 1.21% (3/248) 0% (0/248)
TPOX 6.43% (16/249) 4.82% (12/249) 1.61% (4/249) 0% (0/249)
Tab.5  STR alternations per locus in 250 GI samples
Locus Chromosomal location Repeat Germline mutation frequency [25,26] Mutation frequency
D19S433 19q12 (AAGG)(AAAG)(AAGG)(TAGG)[AAGG]n 0.11% 13.01% (32/246)
D7S820 7q21.11 [GATA] 0.10% 11.65% (29/249)
D6S1043 6q15 [AGAT]9–25 0.14% 15.26% (38/249)
CSF1PO 5q33.1 [AGAT] 0.16% 22.09% (55/249)
D5S818 5q23.2 [AGAT] 0.11% 18.47% (46/249)
FGA 4q28 [TTTC]3TTTTTTCT[CTTT]nCTCC[TTCC]2 0.28% 21.46% (53/247)
D3S1358 3p21.31 [AGAT], [TCTA] 0.12% 10.80% (27/250)
D2S1338 2q35 [TGCC]n[TTCC]n 0.12% 14.06% (35/249)
TPOX 2p25.3 [AATG] 0.01% 6.43% (16/249)
D21S11 21q21.1 [TCTA], [TCTG] 0.19% 12.45% (31/249)
Penta D 21q22.3 [AAAGA] 0.14% 16.80% (42/250)
D18S51 18q21.33 [GAAA] 0.22% 32.79% (81/247)
D16S539 16q24.1 [GATA] 0.11% 12.00% (30/250)
Penta E 15q26.2 [AAAGA] 0.16% 22.45% (55/245)
D13S317 13q31.1 [TATC] 0.14% 11.29% (28/248)
D12S391 12p13.2 [AGAT]8–17[AGAC]6–10[AGAT]0–1 0.24% 14.17% (35/247)
Vwa 12p13.31 [TCTA] with [TCTG] and [TCCA] inserts 0.17% 21.14% (52/246)
TH01 11p15.5 [TCAT] 0.01% 8.87% (22/248)
D8S1179 8q24.13 [TATC] 0.14% 15.32% (38/248)
Tab.6  Characteristics of 19 STR loci
Fig.4  Frequency of genetic instabilities at each STR locus.
1 JG Kim, S Shin, J Park. Comparison between mononucleotide and dinucleotide marker panels in gastric cancer with loss of hMLH1 or hMSH2 expression. Int J Biol Markers 2017; 32(3): e352–e356
https://doi.org/10.5301/ijbm.5000266 pmid: 28525661
2 L Hamzehzadeh, M Yousefi, SH Ghaffari. Colorectal cancer screening: a comprehensive review to recent non-invasive methods. Int J Hematol Oncol Stem Cell Res 2017; 11(3): 250–261
pmid: 28989593
3 DT Le, JN Durham, KN Smith, H Wang, BR Bartlett, LK Aulakh, S Lu, H Kemberling, C Wilt, BS Luber, F Wong, NS Azad, AA Rucki, D Laheru, R Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, TF Greten, AG Duffy, KK Ciombor, AD Eyring, BH Lam, A Joe, SP Kang, M Holdhoff, L Danilova, L Cope, C Meyer, S Zhou, RM Goldberg, DK Armstrong, KM Bever, AN Fader, J Taube, F Housseau, D Spetzler, N Xiao, DM Pardoll, N Papadopoulos, KW Kinzler, JR Eshleman, B Vogelstein, RA Anders, LA Diaz Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357(6349): 409–413
https://doi.org/10.1126/science.aan6733 pmid: 28596308
4 A Vanderwalde, D Spetzler, N Xiao, Z Gatalica, J Marshall. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 2018; 7(3): 746–756
https://doi.org/10.1002/cam4.1372 pmid: 29436178
5 W Chen, BJ Swanson, WL Frankel. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol 2017; 12(1): 24
https://doi.org/10.1186/s13000-017-0613-8 pmid: 28259170
6 BW Katona, AK Rustgi. Gastric cancer genomics: advances and future directions. Cell Mol Gastroenterol Hepatol 2017; 3(2): 211–217
https://doi.org/10.1016/j.jcmgh.2017.01.003 pmid: 28275688
7 K Yuza, M Nagahashi, S Watanabe, K Takabe, T Wakai. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017; 8(67): 112103–112115
https://doi.org/10.18632/oncotarget.22783 pmid: 29340115
8 CR Boland, A Goel. Microsatellite instability in colorectal cancer. Gastroenterology 2010; 138(6):2073–2087.e3
https://doi.org/10.1053/j.gastro.2009.12.064 pmid: 20420947
9 C Egoavil, C Alenda, A Castillejo, A Paya, G Peiro, AB Sánchez-Heras, MI Castillejo, E Rojas, VM Barberá, S Cigüenza, JA Lopez, O Piñero, MJ Román, JC Martínez-Escoriza, C Guarinos, L Perez-Carbonell, FI Aranda, JL Soto. Prevalence of Lynch syndrome among patients with newly diagnosed endometrial cancers. PLoS One 2013; 8(11): e79737
https://doi.org/10.1371/journal.pone.0079737 pmid: 24244552
10 X Liu, Z Yang, O Latchoumanin, L Qiao. Antagonizing programmed death-1 and programmed death ligand-1 as a therapeutic approach for gastric cancer. Therap Adv Gastroenterol 2016; 9(6): 853–860
https://doi.org/10.1177/1756283X16658251 pmid: 27803740
11 S Dawood. The evolving role of immune oncology in colorectal cancer. Chin Clin Oncol 2018; 7(2): 17
https://doi.org/10.21037/cco.2018.04.07 pmid: 29764162
12 DT Le, JN Uram, H Wang, BR Bartlett, H Kemberling, AD Eyring, AD Skora, BS Luber, NS Azad, D Laheru, B Biedrzycki, RC Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, SM Duffy, RM Goldberg, A de la Chapelle, M Koshiji, F Bhaijee, T Huebner, RH Hruban, LD Wood, N Cuka, DM Pardoll, N Papadopoulos, KW Kinzler, S Zhou, TC Cornish, JM Taube, RA Anders, JR Eshleman, B Vogelstein, LA Diaz Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520
https://doi.org/10.1056/NEJMoa1500596 pmid: 26028255
13 C Böger, HM Behrens, M Mathiak, S Krüger, H Kalthoff, C Röcken. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget 2016; 7(17): 24269–24283
https://doi.org/10.18632/oncotarget.8169 pmid: 27009855
14 SE Hile, S Shabashev, KA Eckert. Tumor-specific microsatellite instability: do distinct mechanisms underlie the MSI-L and EMAST phenotypes? Mutat Res 2013; 743-744: 67–77
https://doi.org/10.1016/j.mrfmmm.2012.11.003 pmid: 23206442
15 JM Carethers. Microsatellite instability pathway and EMAST in colorectal cancer. Curr Colorectal Cancer Rep 2017; 13(1): 73–80
https://doi.org/10.1007/s11888-017-0352-y pmid: 28367107
16 X Liu, SJ Meltzer. Gastric cancer in the era of precision medicine. Cell Mol Gastroenterol Hepatol 2017; 3(3): 348–358
https://doi.org/10.1016/j.jcmgh.2017.02.003 pmid: 28462377
17 MM Watson, D Lea, E Rewcastle, HR Hagland, K Søreide. Elevated microsatellite alterations at selected tetranucleotides in early-stage colorectal cancers with and without high-frequency microsatellite instability: same, same but different? Cancer Med 2016; 5(7): 1580–1587
https://doi.org/10.1002/cam4.709 pmid: 27061136
18 B Devaraj, A Lee, BL Cabrera, K Miyai, L Luo, S Ramamoorthy, T Keku, RS Sandler, KL McGuire, JM Carethers. Relationship of EMAST and microsatellite instability among patients with rectal cancer. J Gastrointest Surg 2010; 14(10): 1521–1528
https://doi.org/10.1007/s11605-010-1340-6 pmid: 20844976
19 P Laiho, V Launonen, P Lahermo, M Esteller, M Guo, JG Herman, JP Mecklin, H Järvinen, P Sistonen, KM Kim, D Shibata, RS Houlston, LA Aaltonen. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res 2002; 62(4): 1166–1170
pmid: 11861399
20 W Pepiński, I Sołtyszewski, M Skawrońska, M Rogowski, R Zalewska, L Kozłowski, T Filipowski, J Janica. Loss of heterozygosity (LOH)—implications for human genetic identification. Folia Histochem Cytobiol 2009; 47(1): 105–110
https://doi.org/10.2478/v10042-009-0019-x pmid: 19419947
21 C Xiao, Z Peng, F Chen, H Yan, B Zhu, Y Tai, P Qiu, C Liu, X Song, Z Wu, L Chen. Mutation analysis of 19 commonly used short tandem repeat loci in a Guangdong Han population. Leg Med (Tokyo) 2018; 32: 92–97
https://doi.org/10.1016/j.legalmed.2018.03.005 pmid: 29625275
22 SM Zhao, CT Li, SH Zhang, L Li. Application of number of matched STR loci and identical alleles in individual discrimination of colorectal cancer. J Foren Med (Fa Yi Xue Za Zhi) 2009;25(6):412–416, 420 (in China)
23 NC Campanella, C Scapulatempo-Neto, LF Abrahão-Machado, AT Torres De Oliveira, GN Berardinelli, DP Guimarães, RM Reis. Lack of microsatellite instability in gastrointestinal stromal tumors. Oncol Lett 2017; 14(5): 5221–5228
https://doi.org/10.3892/ol.2017.6884 pmid: 29113157
24 RJ Kelly. Immunotherapy for esophageal and gastric cancer. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting 2017; 37:292–300
25 G Filoglu, O Bulbul, G Rayimoglu, FE Yediay, T Zorlu, S Ongoren, H Altuncul. Evaluation of reliability on STR typing at leukemic patients used for forensic purposes. Mol Biol Rep 2014; 41(6): 3961–3972
https://doi.org/10.1007/s11033-014-3264-9 pmid: 24562624
26 C Xiao, Z Peng, F Chen, H Yan, B Zhu, Y Tai, P Qiu, C Liu, X Song, Z Wu, L Chen. Mutation analysis of 19 commonly used short tandem repeat loci in a Guangdong Han population. Leg Med (Tokyo) 2018; 32:92–97
https://doi.org/10.1016/j.legalmed.2018.03.005 pmid: 29625275
27 GGP Peloso, R Rosso, C Previdere. Forensic evaluation of tetranucleotide STR instability in lung cancer. Int Congr Ser 2003; 1239(02): 719–721
https://doi.org/10.1016/S0531-5131(02)00500-9
28 JLR Edelmanna, S Heringb, LC Hornc. Loss of heterozygosity and microsatellite instability of forensically used STR markers in human cervical carcinoma. International Congress Series 2004; 1261: 499–501
https://doi.org/10.1016/S0531-5131(03)01717-5
29 PS Lin, TJ Semrad. Molecular testing for the treatment of advanced colorectal cancer: an overview. Methods Mol Biol 2018; 1765: 281–297
https://doi.org/10.1007/978-1-4939-7765-9_18 pmid: 29589315
30 M Yarchoan, A Hopkins, EM Jaffee. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377(25): 2500–2501
https://doi.org/10.1056/NEJMc1713444 pmid: 29262275
31 S Pelotti, S Ceccardi, M Alù, F Lugaresi, R Trane, M Falconi, C Bini, A Cicognani. Cancerous tissues in forensic genetic analysis. Genet Test 2007; 11(4): 397–400
https://doi.org/10.1089/gte.2007.0004 pmid: 18294056
32 A Copija, D Waniczek, A Witkoś, K Walkiewicz, E Nowakowska-Zajdel. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients. Int J Mol Sci 2017; 18(1): E107
https://doi.org/10.3390/ijms18010107 pmid: 28067827
33 TJFGSJ George, K Gowen, M Kennedy, JR Greenbowe, AB Schrock, S Mahamed Ali, SJ Klempner, AF Hezel, JS Ross, P Stephens, VA Miller, D Fabrizio. Tumor mutational burden as a potential biomarker for PD1/PD-L1 therapy in colorectal cancer. ASCO Annual Meeting Abstracts 2016; 3587
34 Z Jin, HH Yoon. The promise of PD-1 inhibitors in gastro-esophageal cancers: microsatellite instability vs. PD-L1. J Gastrointest Oncol 2016; 7(5): 771–788
https://doi.org/10.21037/jgo.2016.08.06 pmid: 27747091
35 K Søreide. High-fidelity of five quasimonomorphic mononucleotide repeats to high-frequency microsatellite instability distribution in early-stage adenocarcinoma of the colon. Anticancer Res 2011; 31(3): 967–971
pmid: 21498722
36 AIHM Shemirani, MM Haghighi, SM Zadeh, SR Fatemi, MY Taleghani, N Zali, Z Akbari, SM Kashfi, MR Zali. Simplified MSI marker panel for diagnosis of colorectal cancer. Asian Pac J Cancer Prev 2011; 12(8): 2101–2104
pmid: 22292659
37 F Macrae, M Harris. Re: Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2005; 97(12): 936–937, author reply937–938
https://doi.org/10.1093/jnci/dji157 pmid: 15956656
38 LA Aaltonen, P Peltomäki, FS Leach, P Sistonen, L Pylkkänen, JP Mecklin, H Järvinen, SM Powell, J Jen, SR Hamilton, et al.Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260(5109): 812–816
https://doi.org/10.1126/science.8484121 pmid: 8484121
39 SN Thibodeau, G Bren, D Schaid. Microsatellite instability in cancer of the proximal colon. Science 1993; 260(5109): 816–819
https://doi.org/10.1126/science.8484122 pmid: 8484122
40 M Perucho. Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58: 5248-5257, 1998. Cancer Res 1999; 59(1): 249–256
pmid: 9892214
[1] FMD-19007-OF-CJZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed