Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (2) : 170-177    https://doi.org/10.1007/s11684-020-0747-z
REVIEW
Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field
Jianpeng Liu, Xinhua Chen, Shusen Zheng()
Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Key Laboratory of Organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
 Download: PDF(309 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanosecond pulsed electric field (nsPEF) is a novel, nonthermal, and minimally invasive modality that can ablate solid tumors by inducing apoptosis. Recent animal experiments show that nsPEF can induce the immunogenic cell death of hepatocellular carcinoma (HCC) and stimulate the host’s immune response to kill residual tumor cells and decrease distant metastatic tumors. nsPEF-induced immunity is of great clinical importance because the nonthermal ablation may enhance the immune memory, which can prevent HCC recurrence and metastasis. This review summarized the most advanced research on the effect of nsPEF. The possible mechanisms of how locoregional nsPEF ablation enhances the systemic anticancer immune responses were illustrated. nsPEF stimulates the host immune system to boost stimulation and prevail suppression. Also, nsPEF increases the dendritic cell loading and inhibits the regulatory responses, thereby improving immune stimulation and limiting immunosuppression in HCC-bearing hosts. Therefore, nsPEF has excellent potential for HCC treatment.

Keywords nanosecond pulsed electric fields (nsPEF)      hepatocellular carcinoma (HCC)      immune response      recurrence      metastasis     
Corresponding Author(s): Shusen Zheng   
Just Accepted Date: 16 October 2020   Online First Date: 12 November 2020    Issue Date: 23 April 2021
 Cite this article:   
Jianpeng Liu,Xinhua Chen,Shusen Zheng. Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field[J]. Front. Med., 2021, 15(2): 170-177.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0747-z
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I2/170
ResearchersYearnsPEF parametersExperimental animals and cell lineImmune response
Nuccitelli et al. [16]20122000 pulses each, 100 ns long, and 30 kV/cm at a rate of 5–7 pulsesC57/BL6-HGF/SF transgenic mice with melanomas induced by UV radiationElevated CD4+ T cells have been detected in tumor
Chen et al. [15]20141000 pulses each, 100 ns long, and 50 kV/cm with repetition rates of 1 HzOrthotopic HCC model established in rats using N1–S1 HCC cellsPresence of Granzyme-B expressing cells in the tumor
Chen et al. [14]2014300 pulses each, 100 ns long in 0.5 HzAnimal model of human subdermal xenograft HCCLM3 cells in BALB/c nude mouseMacrophage infiltration in tumor
Nuccitelli et al. [40]2015(1) 400 pulses each, 100 ns long, and 15 kV/cm in delivering 50 A
(2) 500 pulses each, 100 ns, and 50 kV/cm
(1) Orthotopic HCC model established in rats using McA-RH7777 cells
(2) C57BL/6 female mice and B6 albino female mice along with the isogenic MCA205 fibrosarcoma cell line
Triggered a CD8-dependant inhibition of secondary tumor growth
Skeate et al. [38]2018Each 100 ns long and 30 kV/cm at a rate of 3 pulsesHuman papillomavirus type 16 (HPV16)-transformed C3.43 mouse tumor cell modelInduced an antitumor response driven by CD8+ T cells
Guo et al. [18]2018300–1000 pulses each, 100 ns long, and 50 kV/cm with the frequency of 1–2 HzFemale Balb/c mice with 4T1 cell lineDestruction of suppressive tumor microenvironment (TME); activation of antigen-presenting cells and induction of a potent antitumor memory response
Lassiter et al. [39]20181000 pulses (1–3 pulses/s) each, 100 ns long, and 48–52 kV/cmOrthotopic HCC model established in rats using N1–S1 HCC cellsActivated innate and adaptive immune memory
Guo et al. [17]2018600–1200 pulses each, 200 ns long, and 30 kV/cm in 2 HzFemale C57BL/6 mice with Pan02 cellsThe number of immune cells in the TME was changed and multiple activation markers were upregulated
Tab.1  Significant findings from preclinical nsPEF studies
Fig.1  Possible mechanism of the nsPEF-induced immune response. Abbreviations: nsPEF, nanosecond pulsed electric field; TAA, tumor-associated antigens; DC, dendritic cells; Tc, effector toxic T cells; Tm, memory T cells; TME, tumor microenvironment; ICD, immunogenic cell death; ER, endoplasmic reticulum; ROS, reactive oxygen species; DAMPs, danger-associated molecular patterns; HMGB1, high mobility group box 1.
NsPEFRFACryoablationMWA
Fundamental principlesUtilizing nsPEF to stimulate cell membrane and subcellular structures to produce membrane perforationUtilizing high-frequency alternating current to generate high temperaturesUtilizing liquefied gases to induce the freezing–thawing cycle of targeted lesionsUtilizing electromagnetic waves to generate heat
Treatment temperatureNonthermal60–100 °C<−40 °C>100 °C
Mechanism of tumor cell injuryApoptosis and immunogenic cell deathCentral area necrosis, peripheral area necrosis, or apoptosisCentral area necrosis, peripheral area necrosis, or apoptosisMainly necrosis
Released signalsDAMPs: CRT, ATP secretion, and HMGB1Intracellular antigens and DAMPs such as HSPs and HMGB1Preserved intracellular organelles, antigens, and DAMPs such as DNA and HSPsDAMPs: HSPs
Immune response(1) The number of immune cells in the TME was changed, and multiple activation markers were upregulated
(2) Elevated CD4+ T and CD8+ T cells were detected, and a CD8+-dependent inhibition of secondary tumor growth was triggered
(3) Activation of antigen-presenting cells and induction of a potent antitumor memory response
(1) Levels of interleukin-1b (IL-1b), IL-6, IL-8, and TNF were increased
(2) The increasing levels of CD4+ and CD8+ T cells, and the decreasing levels of CD25+, FoxP3+, and regulatory T cells
(1) Activating the nuclear factor κ-light-chain-enhancer of activated B cells (NF-kb) pathway
(2) Stimulating T cells and promoting a systemic immune response
(3) Levels of serum IL-1, IL-6, NF-kb, and TNF-a were increased.
The increasing levels of IL-1 and IL-6
Tab.2  Comparison of the immune response induced by nsPEF and thermal ablation
1 LA Torre, F Bray, RL Siegel, J Ferlay, J Lortet-Tieulent, A Jemal. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87–108
https://doi.org/10.3322/caac.21262 pmid: 25651787
2 P Fitzmorris, M Shoreibah, BS Anand, AK Singal. Management of hepatocellular carcinoma. J Cancer Res Clin Oncol 2015; 141(5): 861–876
https://doi.org/10.1007/s00432-014-1806-0 pmid: 25158999
3 V Mazzaferro, E Regalia, R Doci, S Andreola, A Pulvirenti, F Bozzetti, F Montalto, M Ammatuna, A Morabito, L Gennari. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334(11): 693–699
https://doi.org/10.1056/NEJM199603143341104 pmid: 8594428
4 JC Nault, O Sutter, P Nahon, N Ganne-Carrié, O Séror. Percutaneous treatment of hepatocellular carcinoma: state of the art and innovations. J Hepatol 2018; 68(4): 783–797
https://doi.org/10.1016/j.jhep.2017.10.004 pmid: 29031662
5 F Wu, ZB Wang, WZ Chen, W Wang, Y Gui, M Zhang, G Zheng, Y Zhou, G Xu, M Li, C Zhang, H Ye, R Feng. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem 2004; 11(3-4): 149–154
https://doi.org/10.1016/j.ultsonch.2004.01.011 pmid: 15081972
6 MS Chen, JQ Li, Y Zheng, RP Guo, HH Liang, YQ Zhang, XJ Lin, WY Lau. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243(3): 321–328
https://doi.org/10.1097/01.sla.0000201480.65519.b8 pmid: 16495695
7 T Livraghi, F Meloni, M Di Stasi, E Rolle, L Solbiati, C Tinelli, S Rossi. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 2008; 47(1): 82–89
https://doi.org/10.1002/hep.21933 pmid: 18008357
8 BM Künzli, P Abitabile, CA Maurer. Radiofrequency ablation of liver tumors: actual limitations and potential solutions in the future. World J Hepatol 2011; 3(1): 8–14
https://doi.org/10.4254/wjh.v3.i1.8 pmid: 21307982
9 U Pliquett, R Nuccitelli. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields. Bioelectrochemistry 2014; 100: 62–68
https://doi.org/10.1016/j.bioelechem.2014.03.001 pmid: 24680133
10 SJ Beebe, NM Sain, W Ren. Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs). Cells 2013; 2(1): 136–162
https://doi.org/10.3390/cells2010136 pmid: 24709649
11 R Nuccitelli, A McDaniel, S Anand, J Cha, Z Mallon, JC Berridge, D Uecker. Nano-pulse stimulation is a physical modality that can trigger immunogenic tumor cell death. J Immunother Cancer 2017; 5(1): 32
https://doi.org/10.1186/s40425-017-0234-5 pmid: 28428881
12 R Nuccitelli, K Lui, M Kreis, B Athos, P Nuccitelli. Nanosecond pulsed electric field stimulation of reactive oxygen species in human pancreatic cancer cells is Ca2+-dependent. Biochem Biophys Res Commun 2013; 435(4): 580–585
https://doi.org/10.1016/j.bbrc.2013.05.014 pmid: 23680664
13 L He, D Xiao, J Feng, C Yao, L Tang. Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs). Med Oncol 2017; 34(2): 24
https://doi.org/10.1007/s12032-016-0882-1 pmid: 28058631
14 X Chen, S Yin, C Hu, X Chen, K Jiang, S Ye, X Feng, S Fan, H Xie, L Zhou, S Zheng. Comparative study of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma indicate macrophage infiltration contribute to tumor ablation in vivo. PLoS One 2014; 9(1): e86421
https://doi.org/10.1371/journal.pone.0086421 pmid: 24475118
15 R Chen, NM Sain, KT Harlow, YJ Chen, PK Shires, R Heller, SJ Beebe. A protective effect after clearance of orthotopic rat hepatocellular carcinoma by nanosecond pulsed electric fields. Eur J Cancer 2014; 50(15): 2705–2713
https://doi.org/10.1016/j.ejca.2014.07.006 pmid: 25081978
16 R Nuccitelli, K Tran, K Lui, J Huynh, B Athos, M Kreis, P Nuccitelli, EC De Fabo. Non-thermal nanoelectroablation of UV-induced murine melanomas stimulates an immune response. Pigment Cell Melanoma Res 2012; 25(5): 618–629
https://doi.org/10.1111/j.1755-148X.2012.01027.x pmid: 22686288
17 S Guo, NI Burcus, J Hornef, Y Jing, C Jiang, R Heller, SJ Beebe. Nano-pulse stimulation for the treatment of pancreatic cancer and the changes in immune profile. Cancers (Basel) 2018; 10(7): 217 PMID: 29954062
https://doi.org/10.3390/cancers10070217
18 S Guo, Y Jing, NI Burcus, BP Lassiter, R Tanaz, R Heller, SJ Beebe. Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 2018; 142(3): 629–640
https://doi.org/10.1002/ijc.31071 pmid: 28944452
19 R Nuccitelli, R Wood, M Kreis, B Athos, J Huynh, K Lui, P Nuccitelli, EH Epstein Jr. First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method. Exp Dermatol 2014; 23(2): 135–137
https://doi.org/10.1111/exd.12303 pmid: 24330263
20 X Chen, Y Chen, J Jiang, L Wu, S Yin, X Miao, RJ Swanson, S Zheng. Nano-pulse stimulation (NPS) ablate tumors and inhibit lung metastasis on both canine spontaneous osteosarcoma and murine transplanted hepatocellular carcinoma with high metastatic potential. Oncotarget 2017; 8(27): 44032–44039
https://doi.org/10.18632/oncotarget.17178 pmid: 28476039
21 S Yin, X Chen, C Hu, X Zhang, Z Hu, J Yu, X Feng, K Jiang, S Ye, K Shen, H Xie, L Zhou, R James Swanson, S Zheng. Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis. Cancer Lett 2014; 346(2): 285–291
https://doi.org/10.1016/j.canlet.2014.01.009 pmid: 24462824
22 X Chen, J Zhuang, JF Kolb, KH Schoenbach, SJ Beebe. Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields. Technol Cancer Res Treat 2012; 11(1): 83–93
https://doi.org/10.7785/tcrt.2012.500237 pmid: 22181334
23 KH Schoenbach, R Joshi, J Kolb, S Buescher, S Beebe. Subcellular effects of nanosecond electrical pulses. Conf Proc IEEE Eng Med Biol Soc 2004; 7: 5447–5450
pmid: 17271579
24 R Nuccitelli, U Pliquett, X Chen, W Ford, R James Swanson, SJ Beebe, JF Kolb, KH Schoenbach. Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 2006; 343(2): 351–360
https://doi.org/10.1016/j.bbrc.2006.02.181 pmid: 16545779
25 R Nuccitelli, X Chen, AG Pakhomov, WH Baldwin, S Sheikh, JL Pomicter, W Ren, C Osgood, RJ Swanson, JF Kolb, SJ Beebe, KH Schoenbach. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 2009; 125(2): 438–445
https://doi.org/10.1002/ijc.24345 pmid: 19408306
26 R Nuccitelli, K Tran, S Sheikh, B Athos, M Kreis, P Nuccitelli. Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 2010; 127(7): 1727–1736
https://doi.org/10.1002/ijc.25364 pmid: 20473857
27 PT Vernier, Y Sun, L Marcu, S Salemi, CM Craft, MA Gundersen. Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 2003; 310(2): 286–295
https://doi.org/10.1016/j.bbrc.2003.08.140 pmid: 14521908
28 ON Pakhomova, VA Khorokhorina, AM Bowman, R Rodaitė-Riševičienė, G Saulis, S Xiao, AG Pakhomov. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 2012; 527(1): 55–64 doi:10.1016/j.abb.2012.08.004
pmid: 22910297
29 I Adkins, J Fucikova, AD Garg, P Agostinis, R Špíšek. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. OncoImmunology 2015; 3(12): e968434
https://doi.org/10.4161/21624011.2014.968434 pmid: 25964865
30 DV Krysko, AD Garg, A Kaczmarek, O Krysko, P Agostinis, P Vandenabeele. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12(12): 860–875
https://doi.org/10.1038/nrc3380 pmid: 23151605
31 F Mbeunkui, DJ Johann Jr. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009; 63(4): 571–582
https://doi.org/10.1007/s00280-008-0881-9 pmid: 19083000
32 GC Leonardi, S Candido, M Cervello, D Nicolosi, F Raiti, S Travali, DA Spandidos, M Libra. The tumor microenvironment in hepatocellular carcinoma. Int J Oncol 2012; 40(6): 1733–1747
pmid: 22447316
33 J Baglieri, DA Brenner, T Kisseleva. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int J Mol Sci 2019; 20(7): 1723
https://doi.org/10.3390/ijms20071723 pmid: 30959975
34 R Critelli, F Milosa, F Faillaci, R Condello, E Turola, L Marzi, B Lei, F Dituri, S Andreani. Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death Dis 2017; 8(8): e3017 PMID: 28837142
https://doi.org/10.1038/cddis.2017.395
35 Y Wang, K Takeishi, Z Li, E Cervantes-Alvarez, A Collin de l’Hortet, J Guzman-Lepe, X Cui, J Zhu. Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks. Organogenesis 2017; 13(3): 83–94
https://doi.org/10.1080/15476278.2017.1322243 pmid: 28548903
36 MJ Smyth, SF Ngiow, A Ribas, MW Teng. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 2016; 13(3): 143–158
https://doi.org/10.1038/nrclinonc.2015.209 pmid: 26598942
37 C Gao, X Zhang, J Chen, J Zhao, Y Liu, J Zhang, J Wang. Utilizing the nanosecond pulse technique to improve antigen intracellular delivery and presentation to treat tongue squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2018; 23(3): e344–e350
https://doi.org/10.4317/medoral.22227 pmid: 29680844
38 JG Skeate, DM Da Silva, E Chavez-Juan, S Anand, R Nuccitelli, WM Kast. Nano-pulse stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response. PLoS One 2018; 13(1): e0191311
https://doi.org/10.1371/journal.pone.0191311 pmid: 29324830
39 BP Lassiter, S Guo, SJ Beebe. Nano-pulse stimulation ablates orthotopic rat hepatocellular carcinoma and induces innate and adaptive memory immune mechanisms that prevent recurrence. Cancers (Basel) 2018; 10(3): 69
pmid: 29533981
40 R Nuccitelli, JC Berridge, Z Mallon, M Kreis, B Athos, P Nuccitelli. Nanoelectroablation of murine tumors triggers a CD8-dependent inhibition of secondary tumor growth. PLoS One 2015; 10(7): e0134364
https://doi.org/10.1371/journal.pone.0134364 pmid: 26231031
41 NE Blachère, RB Darnell, ML Albert. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol 2005; 3(6): e185
https://doi.org/10.1371/journal.pbio.0030185 pmid: 15839733
42 SA Dromi, MP Walsh, S Herby, B Traughber, J Xie, KV Sharma, KP Sekhar, A Luk, DJ Liewehr, MR Dreher, TJ Fry, BJ Wood. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiology 2009; 251(1): 58–66
https://doi.org/10.1148/radiol.2511072175 pmid: 19251937
43 E Mizukoshi, T Yamashita, K Arai, H Sunagozaka, T Ueda, F Arihara, T Kagaya, T Yamashita, K Fushimi, S Kaneko. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013; 57(4): 1448–1457
https://doi.org/10.1002/hep.26153 pmid: 23174905
44 F Ahmad, G Gravante, N Bhardwaj, A Strickland, R Basit, K West, R Sorge, AR Dennison, DM Lloyd. Changes in interleukin-1b and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections. Am J Surg 2010; 200(4): 500–506
https://doi.org/10.1016/j.amjsurg.2009.12.025 pmid: 20887844
45 MS Sabel. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2009; 58(1): 1–11 PMID:19007768
https://doi.org/10.1016/j.cryobiol.2008.10.126
46 R Slovak, JM Ludwig, SN Gettinger, RS Herbst, HS Kim. Immuno-thermal ablations- boosting the anticancer immune response. J Immunother Cancer 2017; 5(1): 78
https://doi.org/10.1186/s40425-017-0284-8 pmid: 29037259
[1] Wei Zhang, Bixiang Zhang, Xiao-ping Chen. Adjuvant treatment strategy after curative resection for hepatocellular carcinoma[J]. Front. Med., 2021, 15(2): 155-169.
[2] Xiaohui Wang, Zhiqiang Wu, Wei Qiu, Ping Chen, Xiang Xu, Weidong Han. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system[J]. Front. Med., 2020, 14(6): 726-745.
[3] Yun Zhang, Robert A. Weinberg. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front. Med., 2018, 12(4): 361-373.
[4] Yang Gao, Wen Tian, Xiaoxu Han, Feng Gao. Immunological and virological characteristics of human immunodeficiency virus type 1 superinfection: implications in vaccine design[J]. Front. Med., 2017, 11(4): 480-489.
[5] Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer[J]. Front. Med., 2017, 11(2): 214-222.
[6] Yugang Cheng,Hanxiang Zhan,Lei Wang,Jianwei Xu,Guangyong Zhang,Zongli Zhang,Sanyuan Hu. Analysis of 100 consecutive cases of resectable pancreatic neuroendocrine neoplasms: clinicopathological characteristics and long-term outcomes[J]. Front. Med., 2016, 10(4): 444-450.
[7] Chunxiao Li,Haijuan Wang,Feng Lin,Hui Li,Tao Wen,Haili Qian,Qimin Zhan. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer[J]. Front. Med., 2016, 10(2): 178-182.
[8] Jiangnan Liu,Bin Yi,Zhe Zhang,Yi Cao. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes[J]. Front. Med., 2016, 10(2): 204-211.
[9] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[10] Du Yan, Han Xue, Pu Rui, Xie Jiaxin, Zhang Yuwei, Cao Guangwen. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk[J]. Front. Med., 2014, 8(2): 217-226.
[11] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[12] Tian Wang, Yan Li, Abidan Tuerhanjiang, Wenwen Wang, Zhangying Wu, Ming Yuan, Shixuan Wang. Correlation of Twist upregulation and senescence bypass during the progression and metastasis of cervical cancer[J]. Front Med, 2014, 8(1): 106-112.
[13] Xinghua Gao, Hongduo Chen. Hyperthermia on skin immune system and its application in the treatment of human papillomavirus-infected skin diseases[J]. Front. Med., 2014, 8(1): 1-5.
[14] Carmen Chak-Lui Wong, Alan Ka-Lun Kai, Irene Oi-Lin Ng. The impact of hypoxia in hepatocellular carcinoma metastasis[J]. Front Med, 2014, 8(1): 33-41.
[15] Xi Feng, Madhava Pai, Malkhaz Mizandari, Tinatin Chikovani, Duncan Spalding, Long Jiao, Nagy Habib. Towards the optimization of management of hepatocellular carcinoma[J]. Front Med, 2011, 5(3): 271-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed