Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (4) : 431-449    https://doi.org/10.1007/s11684-020-0761-1
REVIEW
Artificial intelligence in radiotherapy: a technological review
Ke Sheng()
Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA
 Download: PDF(2258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radiation therapy (RT) is widely used to treat cancer. Technological advances in RT have occurred in the past 30 years. These advances, such as three-dimensional image guidance, intensity modulation, and robotics, created challenges and opportunities for the next breakthrough, in which artificial intelligence (AI) will possibly play important roles. AI will replace certain repetitive and labor-intensive tasks and improve the accuracy and consistency of others, particularly those with increased complexity because of technological advances. The improvement in efficiency and consistency is important to manage the increasing cancer patient burden to the society. Furthermore, AI may provide new functionalities that facilitate satisfactory RT. The functionalities include superior images for real-time intervention and adaptive and personalized RT. AI may effectively synthesize and analyze big data for such purposes. This review describes the RT workflow and identifies areas, including imaging, treatment planning, quality assurance, and outcome prediction, that benefit from AI. This review primarily focuses on deep-learning techniques, although conventional machine-learning techniques are also mentioned.

Keywords artificial intelligence      radiation therapy      medical imaging      treatment planning      quality assurance      outcome prediction     
Corresponding Author(s): Ke Sheng   
Just Accepted Date: 28 June 2020   Online First Date: 28 July 2020    Issue Date: 26 August 2020
 Cite this article:   
Ke Sheng. Artificial intelligence in radiotherapy: a technological review[J]. Front. Med., 2020, 14(4): 431-449.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0761-1
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I4/431
Fig.1  Typical RT workflow.
Procedure AI contributions
Image reconstruction Low dose, sparse view, accelerated image acquisition, and improve image quality of CBCT
Synthesis, registration, and segmentation Deep learning for synthetic image creation, registration, and segmentation
Treatment planning Deep-learning prediction of dose distribution
Quality assurance (QA) Machine learning to automatically detect treatment system errors
Treatment delivery AI-assisted image reconstruction, registration, and segmentation for online procedures
Outcome prediction after dose delivery AI prediction of the patient tumor and normal tissue response to RT based on pre-, during-, and post-RT images
Tab.1  Overview of the opportunities for AI in each step of RT
Fig.2  Architecture of deep residual CNN for CBCT scatter correction [92]. Black solid rectangles denote residual blocks.
Fig.3  Example of a patient showing various registrations with and without synthetic bridge images. (A−E) Registration of non-aligned CT (green) to a MR image (red). (D) The directly registered non-aligned CT (purple). (E) Registration of the corresponding CTsynth to the nonaligned CT. (F–I) Sagittal view. The non-deformed volumes. (J–N) The results for various registrations. Arrows denote unanatomical deformation in direct multimodel registration [135].
Fig.4  Examples of H&N CT segmentation results by GAN, SC-DenseNet, SC-GAN-ResNet, and SC-GAN-DenseNet. The first column shows the ground truth; the second, third, fourth, and fifth columns present the segmentation results by GAN, SC-DenseNet, SC-GAN-ResNet, and SC-GAN-DenseNet, respectively. Brainstem (purple), optical chiasm (dark green), mandible (green), left and right optical nerves (orange and light orange), left and right parotid glands (blue and yellow), left and right submandibular glands (pink and light green). Single, double, and blunt arrows denote false-positive islands, under-segmentations, and mis-segmentations, respectively [155].
Organ/method Hall [156] Hall and ?Giaccia [157] Ibragimov and ?Xing [153] Wang et al. [158] Tong et al. [154] Tong et al. [155]
Brainstem 82 87±4 Unavailable 90.3±3.8 86.97±2.95 86.72±2.92
Optical chiasm Unavailable 35±16 37.4±13.4 Unavailable 58.35±10.28 59.16±9.76
Mandible 89 93±1 89.5±3.6 94.4±1.3 93.67±1.21 93.91±1.32
Left optical nerve Unavailable 63±5 63.9±6.9 Unavailable 65.31±5.75 66.38±4.83
Right optical nerve Unavailable 63±5 64.5±7.5 Unavailable 68.89±4.74 69.91±4.38
Left parotid 82 84±7 76.6±6.1 82.3±5.2 83.49±2.29 85.49±1.78
Right parotid 82 84±7 77.9±5.4 82.9±6.1 83.18±1.45 85.77±2.44
Left submandibular 69 78±8 69.7±13.3 Unavailable 75.48±6.49 80.65±5.08
Right submandibular 69 78±8 73.0±9.2 Unavailable 81.31±6.45 81.86±4.96
Tab.2  Comparison of segmentation accuracy between the conventional segmentation and deep-learning segmentation for H&N CT
Fig.5  Actual and predicted doses for an H&N patient using deep learning [116]. ©Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publishing. All rights reserved.
Fig.6  Scatter plots illustrating error classification with the deep-learning and handcrafted approaches on the training data set.
1 DA Jaffray, JH Siewerdsen, JW Wong, AA Martinez. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2002; 53(5): 1337–1349
https://doi.org/10.1016/S0360-3016(02)02884-5
2 S Mutic, JF Dempsey. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 2014; 24(3): 196–199
https://doi.org/10.1016/j.semradonc.2014.02.008
3 A Brahme. Current algorithms for computed electron beam dose planning. Radiother Oncol 1985; 3(4): 347–362
https://doi.org/10.1016/S0167-8140(85)80048-7
4 A Brahme, P Andreo. Dosimetry and quality specification of high energy photon beams. Acta Radiol Oncol 1986; 25(3): 213–223
https://doi.org/10.3109/02841868609136408
5 A Brahme, JE Roos, I Lax. Solution of an integral equation encountered in rotation therapy. Phys Med Biol 1982; 27(10): 1221–1229
https://doi.org/10.1088/0031-9155/27/10/002
6 A Brahme, AK Agren. Optimal dose distribution for eradication of heterogeneous tumours. Acta Oncol 1987; 26(5): 377–385
https://doi.org/10.3109/02841868709104364
7 K Woods, P Lee, T Kaprealian, I Yang, K Sheng. Cochlea-sparing acoustic neuroma treatment with 4π radiation therapy. Adv Radiat Oncol 2018; 3(2): 100–107
https://doi.org/10.1016/j.adro.2018.01.004
8 VY Yu, A Landers, K Woods, D Nguyen, M Cao, D Du, RK Chin, K Sheng, TB Kaprealian. A prospective 4π radiation therapy clinical study in recurrent high-grade glioma patients. Int J Radiat Oncol Biol Phys 2018; 101(1): 144–151
https://doi.org/10.1016/j.ijrobp.2018.01.048
9 VL Murzin, K Woods, V Moiseenko, R Karunamuni, KR Tringale, TM Seibert, MJ Connor, DR Simpson, K Sheng, JA Hattangadi-Gluth. 4π plan optimization for cortical-sparing brain radiotherapy. Radiother Oncol 2018; 127(1): 128–135
https://doi.org/10.1016/j.radonc.2018.02.011
10 A Tran, K Woods, D Nguyen, VY Yu, T Niu, M Cao, P Lee, K Sheng. Predicting liver SBRT eligibility and plan quality for VMAT and 4π plans. Radiat Oncol 2017; 12(1): 70
https://doi.org/10.1186/s13014-017-0806-z
11 K Woods, D Nguyen, A Tran, VY Yu, M Cao, T Niu, P Lee, K Sheng. Viability of non-coplanar VMAT for liver SBRT as compared to coplanar VMAT and beam orientation optimized 4π IMRT. Adv Radiat Oncol 2016; 1(1): 67–75
https://doi.org/10.1016/j.adro.2015.12.004
12 JC Rwigema, D Nguyen, DE Heron, AM Chen, P Lee, PC Wang, JA Vargo, DA Low, MS Huq, S Tenn, ML Steinberg, P Kupelian, K Sheng. 4π noncoplanar stereotactic body radiation therapy for head-and-neck cancer: potential to improve tumor control and late toxicity. Int J Radiat Oncol Biol Phys 2015; 91(2): 401–409
https://doi.org/10.1016/j.ijrobp.2014.09.043
13 D Nguyen, JC Rwigema, VY Yu, T Kaprealian, P Kupelian, M Selch, P Lee, DA Low, K Sheng. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy. Radiat Oncol 2014; 9(1): 239
https://doi.org/10.1186/s13014-014-0239-x
14 P Dong, P Lee, D Ruan, T Long, E Romeijn, DA Low, P Kupelian, J Abraham, Y Yang, K Sheng. 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol Biol Phys 2013; 86(3): 407–413
https://doi.org/10.1016/j.ijrobp.2013.02.002
15 P Dong, P Lee, D Ruan, T Long, E Romeijn, Y Yang, D Low, P Kupelian, K Sheng. 4π non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys 2013; 85(5): 1360–1366
https://doi.org/10.1016/j.ijrobp.2012.09.028
16 D O’Connor, V Yu, D Nguyen, D Ruan, K Sheng. Fraction-variant beam orientation optimization for non-coplanar IMRT. Phys Med Biol 2018; 63(4): 045015
https://doi.org/10.1088/1361-6560/aaa94f
17 J Keyrilainen, M Fernandez, ML Karjalainen-Lindsberg, P Virkkunen, M Leidenius, K von Smitten, P Sipila, S Fiedler, H Suhonen, P Suortti, A Bravin. Toward high-contrast breast CT at low radiation dose. Radiology 2008; 249(1): 321–327
https://doi.org/10.1148/radiol.2491072129
18 H Chen, Y Zhang, Y Chen, J Zhang, W Zhang, H Sun, Y Lv, P Liao, J Zhou, G Wang. LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans Med Imaging 2018; 37(6): 1333–1347
https://doi.org/10.1109/TMI.2018.2805692
19 S Ha, K Mueller. A look-up table-based ray integration framework for 2-D/3-D forward and back projection in X-ray CT. IEEE Trans Med Imaging 2018; 37(2): 361–371
https://doi.org/10.1109/TMI.2017.2741781
20 J He, Y Yang, Y Wang, D Zeng, Z Bian, H Zhang, J Sun, Z Xu, J Ma. Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction. IEEE Trans Med Imaging 2019; 38(2): 371–382
https://doi.org/10.1109/TMI.2018.2865202
21 E Kang, W Chang, J Yoo, JC Ye. Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 2018; 37(6): 1358–1369
https://doi.org/10.1109/TMI.2018.2823756
22 S Li, D Zeng, J Peng, Z Bian, H Zhang, Q Xie, Y Wang, Y Liao, S Zhang, J Huang, D Meng, Z Xu, J Ma. An efficient iterative cerebral perfusion CT reconstruction via low-rank tensor decomposition with spatial-temporal total variation regularization. IEEE Trans Med Imaging 2019; 38(2): 360–370
https://doi.org/10.1109/TMI.2018.2865198
23 K Mechlem, S Ehn, T Sellerer, E Braig, D Munzel, F Pfeiffer, PB Noel. Joint statistical iterative material image reconstruction for spectral computed tomography using a semi-empirical forward model. IEEE Trans Med Imaging 2018; 37(1): 68–80
https://doi.org/10.1109/TMI.2017.2726687
24 A Cai, L Li, Z Zheng, L Wang, B Yan. Block-matching sparsity regularization-based image reconstruction for low-dose computed tomography. Med Phys 2018; 45(6): 2439–2452
https://doi.org/10.1002/mp.12911
25 E Kang, HJ Koo, DH Yang, JB Seo, JC Ye. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019; 46(2): 550–562
https://doi.org/10.1002/mp.13284
26 BJ van Nierop, JF Prince, R van Rooij, M van den Bosch, M Lam, H de Jong. Accuracy of SPECT/CT-based lung dose calculation for Holmium-166 hepatic radioembolization before OSEM convergence. Med Phys 2018; 45(8): 3871–3879
https://doi.org/10.1002/mp.13024
27 C Gu, D Zeng, J Lin, S Li, J He, H Zhang, Z Bian, S Niu, Z Zhang, J Huang, B Chen, D Zhao, W Chen, J Ma. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization. Phys Med Biol 2018; 63(12): 125009
https://doi.org/10.1088/1361-6560/aac7bd
28 M Holbrook, DP Clark, CT Badea. Low-dose 4D cardiac imaging in small animals using dual source micro-CT. Phys Med Biol 2018; 63(2): 025009
https://doi.org/10.1088/1361-6560/aa9b45
29 W Yu, C Wang, X Nie, D Zeng. Sparsity-induced dynamic guided filtering approach for sparse-view data toward low-dose X-ray computed tomography. Phys Med Biol 2018; 63(23): 235016
https://doi.org/10.1088/1361-6560/aaeea6
30 J Bian, K Yang, JM Boone, X Han, EY Sidky, X Pan. Investigation of iterative image reconstruction in low-dose breast CT. Phys Med Biol 2014; 59(11): 2659–2685
https://doi.org/10.1088/0031-9155/59/11/2659
31 H Shan, Y Zhang, Q Yang, U Kruger, MK Kalra, L Sun, W Cong, G Wang. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 2018; 37(6): 1522–1534
https://doi.org/10.1109/TMI.2018.2832217
32 Q Yang, P Yan, Y Zhang, H Yu, Y Shi, X Mou, MK Kalra, Y Zhang, L Sun, G Wang. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging 2018; 37(6): 1348–1357
https://doi.org/10.1109/TMI.2018.2827462
33 X Yi, P Babyn. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 2018; 31(5): 655–669
https://doi.org/10.1007/s10278-018-0056-0
34 C You, Q Yang, H Shan, L Gjesteby, G Li, S Ju, Z Zhang, Z Zhao, Y Zhang, W Cong, G. Wang Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 2018; 6: 41839–41855
https://doi.org/10.1109/ACCESS.2018.2858196
35 E Kang, J Min, JC Ye. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 2017; 44(10): e360–e375
https://doi.org/10.1002/mp.12344
36 H Chen, Y Zhang, MK Kalra, F Lin, Y Chen, P Liao, J Zhou, G Wang. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 2017; 36(12): 2524–2535
https://doi.org/10.1109/TMI.2017.2715284
37 H Chen, Y Zhang, W Zhang, P Liao, K Li, J Zhou, G Wang. Low-dose CT via convolutional neural network. Biomed Opt Express 2017; 8(2): 679–694
https://doi.org/10.1364/BOE.8.000679
38 Q Lyu, C Yang, H Gao, Y Xue, D O’Connor, T Niu, K Sheng. Technical Note: Iterative megavoltage CT (MVCT) reconstruction using block-matching 3D-transform (BM3D) regularization. Med Phys 2018; 45(6): 2603–2610
https://doi.org/10.1002/mp.12916
39 Q Lyu, D Ruan, J Hoffman, R Neph, M McNitt-Gray, K Sheng. Iterative reconstruction for low dose CT using Plug-and-Play alternating direction method of multipliers (ADMM) framework. SPIE Medical Imaging: Image Processing 2019; 2019: 10949
https://doi.org/10.1117/12.2512484
40 U Stankovic, LS Ploeger, M van Herk, JJ Sonke. Optimal combination of anti-scatter grids and software correction for CBCT imaging. Med Phys 2017; 44(9): 4437–4451
https://doi.org/10.1002/mp.12385
41 J Xu, A Sisniega, W Zbijewski, H Dang, JW Stayman, X Wang, DH Foos, N Aygun, VE Koliatsos, JH Siewerdsen. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization. Phys Med Biol 2016; 61(8): 3180–3207
https://doi.org/10.1088/0031-9155/61/8/3180
42 H Zhang, F Kong, L Ren, JY Jin. An inter-projection interpolation (IPI) approach with geometric model restriction to reduce image dose in cone beam CT (CBCT). In: Zhang YJ, Tavares JMRS. Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. 2014: 12–23
https://doi.org/10.1007/978-3-319-09994-1_2
43 U Stankovic, M van Herk, LS Ploeger, JJ Sonke. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid. Med Phys 2014; 41(6): 061910
https://doi.org/10.1118/1.4875978
44 A Sisniega, W Zbijewski, A Badal, IS Kyprianou, JW Stayman, JJ Vaquero, JH Siewerdsen. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med Phys 2013; 40(5): 051915
https://doi.org/10.1118/1.4801895
45 L Ren, FF Yin, IJ Chetty, DA Jaffray, JY Jin. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT). Med Phys 2012; 39(8): 5099–5110
https://doi.org/10.1118/1.4736826
46 JY Jin, L Ren, Q Liu, J Kim, N Wen, H Guan, B Movsas, IJ Chetty. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Med Phys 2010; 37(11): 5634–5644
https://doi.org/10.1118/1.3497272
47 M Sun, JM Star-Lack. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol 2010; 55(22): 6695–6720
https://doi.org/10.1088/0031-9155/55/22/007
48 Y Lu, B Peng, BA Lau, YH Hu, DA Scaduto, W Zhao, G Gindi. A scatter correction method for contrast-enhanced dual-energy digital breast tomosynthesis. Phys Med Biol 2015; 60(16): 6323–6354
https://doi.org/10.1088/0031-9155/60/16/6323
49 H Dang, JW Stayman, A Sisniega, J Xu, W Zbijewski, X Wang, DH Foos, N Aygun, VE Koliatsos, JH Siewerdsen. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging. Phys Med Biol 2015; 60(16): 6153–6175
https://doi.org/10.1088/0031-9155/60/16/6153
50 PG Watson, E Mainegra-Hing, N Tomic, J Seuntjens. Implementation of an efficient Monte Carlo calculation for CBCT scatter correction: phantom study. J Appl Clin Med Phys 2015; 16(4): 216–227
https://doi.org/10.1120/jacmp.v16i4.5393
51 C Kim, M Park, Y Sung, J Lee, J Choi, S Cho. Data consistency-driven scatter kernel optimization for X-ray cone-beam CT. Phys Med Biol 2015; 60(15): 5971–5994
https://doi.org/10.1088/0031-9155/60/15/5971
52 Y Xu, T Bai, H Yan, L Ouyang, A Pompos, J Wang, L Zhou, SB Jiang, X Jia. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy. Phys Med Biol 2015; 60(9): 3567–3587
https://doi.org/10.1088/0031-9155/60/9/3567
53 A Sisniega, W Zbijewski, J Xu, H Dang, JW Stayman, J Yorkston, N Aygun, V Koliatsos, JH Siewerdsen. High-fidelity artifact correction for cone-beam CT imaging of the brain. Phys Med Biol 2015; 60(4): 1415–1439
https://doi.org/10.1088/0031-9155/60/4/1415
54 L Ritschl, R Fahrig, M Knaup, J Maier, M Kachelriess. Robust primary modulation-based scatter estimation for cone-beam CT. Med Phys 2015; 42(1): 469–478
https://doi.org/10.1118/1.4903261
55 GJ Bootsma, F Verhaegen, DA Jaffray. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting. Med Phys 2015; 42(1): 54–68
https://doi.org/10.1118/1.4903260
56 W Zbijewski, A Sisniega, JW Stayman, A Muhit, G Thawait, N Packard, R Senn, D Yang, J Yorkston, JA Carrino, JH Siewerdsen. High-performance soft-tissue imaging in extremity cone-beam CT. Proc SPIE Int Soc Opt Eng 2014; 9033: 903329
57 JM Pawlowski, GX Ding. An algorithm for kilovoltage X-ray dose calculations with applications in kV-CBCT scans and 2D planar projected radiographs. Phys Med Biol 2014; 59(8): 2041–2058
https://doi.org/10.1088/0031-9155/59/8/2041
58 J Li, W Yao, Y Xiao, Y Yu. Feasibility of improving cone-beam CT number consistency using a scatter correction algorithm. J Appl Clin Med Phys 2013; 14(6): 4346
https://doi.org/10.1120/jacmp.v14i6.4346
59 S Aootaphao, SS Thongvigitmanee, J Rajruangrabin, P Junhunee, P Thajchayapong. Experiment-based scatter correction for cone-beam computed tomography using the statistical method. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 5087–5090
https://doi.org/10.1109/EMBC.2013.6610692
60 RS Thing, U Bernchou, E Mainegra-Hing, C Brink. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm. Acta Oncol 2013; 52(7): 1477–1483
https://doi.org/10.3109/0284186X.2013.813641
61 AA Muhit, S Arora, M Ogawa, Y Ding, W Zbijewski, JW Stayman, G Thawait, N Packard, R Senn, D Yang, J Yorkston, CO Bingham 3rd, K Means, JA Carrino, JH Siewerdsen. Peripheral quantitative CT (pQCT) using a dedicated extremity cone-beam CT scanner. Proc SPIE Int Soc Opt Eng 2013; 8672: 867203
62 B Meng, H Lee, L Xing, BP Fahimian. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval. Med Phys 2013; 40(1): 011907
https://doi.org/10.1118/1.4769421
63 CJ Boylan, TE Marchant, J Stratford, J Malik, A Choudhury, R Shrimali, J Rodgers, CG Rowbottom. A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery. Phys Med Biol 2012; 57(12): 3727–3739
https://doi.org/10.1088/0031-9155/57/12/3727
64 T Niu, A Al-Basheer, L Zhu. Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: first patient studies. Med Phys 2012; 39(4): 1991–2000
https://doi.org/10.1118/1.3693050
65 AK Hunter, WD McDavid. Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofac Radiol 2012; 41(3): 217–223
https://doi.org/10.1259/dmfr/19015946
66 T Niu, L Zhu. Scatter correction for full-fan volumetric CT using a stationary beam blocker in a single full scan. Med Phys 2011; 38(11): 6027–6038
https://doi.org/10.1118/1.3651619
67 M van Herk, L Ploeger, JJ Sonke. A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation. Radiother Oncol 2011; 100(3): 365–369
https://doi.org/10.1016/j.radonc.2011.08.019
68 EP Rührnschopf , K Klingenbeck. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches. Med Phys 2011; 38(7): 4296–4311
https://doi.org/10.1118/1.3599033
69 UV Elstrøm, LP Muren, JB Petersen, C Grau. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region. Acta Oncol 2011; 50(6): 908–917
https://doi.org/10.3109/0284186X.2011.590525
70 M Sun, T Nagy, G Virshup, L Partain, M Oelhafen, J Star-Lack. Correction for patient table-induced scattered radiation in cone-beam computed tomography (CBCT). Med Phys 2011; 38(4): 2058–2073
https://doi.org/10.1118/1.3557468
71 J Wang, W Mao, T Solberg. Scatter correction for cone-beam computed tomography using moving blocker strips: a preliminary study. Med Phys 2010; 37(11): 5792–5800
https://doi.org/10.1118/1.3495819
72 D Lazos, JF Williamson. Monte Carlo evaluation of scatter mitigation strategies in cone-beam CT. Med Phys 2010; 37(10): 5456–5470
https://doi.org/10.1118/1.3488978
73 T Niu, M Sun, J Star-Lack, H Gao, Q Fan, L Zhu. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images. Med Phys 2010; 37(10): 5395–5406
https://doi.org/10.1118/1.3483260
74 E Mainegra-Hing, I Kawrakow. Variance reduction techniques for fast Monte Carlo CBCT scatter correction calculations. Phys Med Biol 2010; 55(16): 4495–4507
https://doi.org/10.1088/0031-9155/55/16/S05
75 L Yu, TJ Vrieze, MR Bruesewitz, JM Kofler, DR DeLone, JF Pallanch, EP Lindell, CH McCollough. Dose and image quality evaluation of a dedicated cone-beam CT system for high-contrast neurologic applications. AJR Am J Roentgenol 2010; 194(2): W193–201
https://doi.org/10.2214/AJR.09.2951
76 H Guan, H Dong. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 2009; 54(20): 6239–6250
https://doi.org/10.1088/0031-9155/54/20/013
77 I Reitz, BM Hesse, S Nill, T Tucking, U Oelfke. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT. Z Med Phys 2009; 19(3): 158–172
https://doi.org/10.1016/j.zemedi.2009.03.001
78 G Poludniowski, PM Evans, VN Hansen, S Webb. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol 2009; 54(12): 3847–3864
https://doi.org/10.1088/0031-9155/54/12/016
79 H Li, R Mohan, XR Zhu. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging. Phys Med Biol 2008; 53(23): 6729–6748
https://doi.org/10.1088/0031-9155/53/23/006
80 J Rinkel, L Gerfault, F Esteve, JM Dinten. A new method for X-ray scatter correction: first assessment on a cone-beam CT experimental setup. Phys Med Biol 2007; 52(15): 4633–4652
https://doi.org/10.1088/0031-9155/52/15/018
81 D Letourneau, R Wong, D Moseley, MB Sharpe, S Ansell, M Gospodarowicz, DA Jaffray. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image quality and system performance. Int J Radiat Oncol Biol Phys 2007; 67(4): 1229–1237
https://doi.org/10.1016/j.ijrobp.2006.09.058
82 G Jarry, SA Graham, DJ Moseley, DJ Jaffray, JH Siewerdsen, F Verhaegen. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys 2006; 33(11): 4320–4329
https://doi.org/10.1118/1.2358324
83 JH Siewerdsen, MJ Daly, B Bakhtiar, DJ Moseley, S Richard, H Keller, DA Jaffray. A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 2006; 33(1): 187–197
https://doi.org/10.1118/1.2148916
84 R Ning, X Tang, D Conover. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys 2004; 31(5): 1195–1202
https://doi.org/10.1118/1.1711475
85 A Wang, A Maslowski, P Messmer, M Lehmann, A Strzelecki, E Yu, P Paysan, M Brehm, P Munro, J Star-Lack, D Seghers. Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter — Part II: system modeling, scatter correction, and optimization. Med Phys 2018; 45(5): 1914–1925
https://doi.org/10.1002/mp.12849
86 A Maslowski, A Wang, M Sun, T Wareing, I Davis, J Star-Lack. Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter — Part I: core algorithms and validation. Med Phys 2018; 45(5): 1899–1913
https://doi.org/10.1002/mp.12850
87 J Harms, Y Lei, T Wang, R Zhang, J Zhou, X Tang, WJ Curran, T Liu, X Yang. Paired cycle-GAN-based image correction for quantitative cone-beam CT. Med Phys 2019; 46(9): 3998–4009
https://doi.org/10.1002/mp.13656
88 Y Jiang, C Yang, P Yang, X Hu, C Luo, Y Xue, L Xu, X Hu, L Zhang, J Wang, K Sheng, T Niu. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol 2019; 64(14): 145003
https://doi.org/10.1088/1361-6560/ab23a6
89 X Liang, L Chen, D Nguyen, Z Zhou, X Gu, M Yang, J Wang, S Jiang. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol 2019; 64(12): 125002
https://doi.org/10.1088/1361-6560/ab22f9
90 Y Nomura, Q Xu, H Shirato, S Shimizu, L Xing. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Med Phys 2019; 46(7): 3142–3155
https://doi.org/10.1002/mp.13583
91 DC Hansen, G Landry, F Kamp, M Li, C Belka, K Parodi, C Kurz. ScatterNet: a convolutional neural network for cone-beam CT intensity correction. Med Phys 2018; 45(11): 4916–4926
https://doi.org/10.1002/mp.13175
92 Y Jiang, C Yang, P Yang, X Hu, C Luo, Y Xue, L Xu, X Hu, L Zhang, J Wang, K Sheng, T Niu. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol 2019; 64(14): 145003
https://doi.org/10.1088/1361-6560/ab23a6
93 MA Griswold, PM Jakob, RM Heidemann, M Nittka, V Jellus, J Wang, B Kiefer, A Haase. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47(6): 1202–1210
https://doi.org/10.1002/mrm.10171
94 AG Schreyer, A Geissler, H Albrich, J Scholmerich, S Feuerbach, G Rogler, M Volk, H Herfarth. Abdominal MRI after enteroclysis or with oral contrast in patients with suspected or proven Crohn’s disease. Clin Gastroenterol Hepatol 2004; 2(6): 491–497
https://doi.org/10.1016/S1542-3565(04)00168-5
95 C Paganelli, J Kipritidis, D Lee, G Baroni, P Keall, M Riboldi. Image-based retrospective 4D MRI in external beam radiotherapy: a comparative study with a digital phantom. Med Phys 2018; 45(7): 3161–3172
https://doi.org/10.1002/mp.12965
96 C Paganelli, P Summers, C Gianoli, M Bellomi, G Baroni, M Riboldi. A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site. Med Biol Eng Comput 2017; 55(11): 2001–2014
https://doi.org/10.1007/s11517-017-1646-6
97 G Li, J Wei, D Olek, M Kadbi, N Tyagi, K Zakian, J Mechalakos, JO Deasy, M Hunt. Direct comparison of respiration-correlated four-dimensional magnetic resonance imaging reconstructed using concurrent internal navigator and external bellows. Int J Radiat Oncol Biol Phys 2017; 97(3): 596–605
https://doi.org/10.1016/j.ijrobp.2016.11.004
98 K Bernatowicz, M Peroni, R Perrin, DC Weber, A Lomax. Four-dimensional dose reconstruction for scanned proton therapy using liver 4DCT-MRI. Int J Radiat Oncol Biol Phys 2016; 95(1): 216–223
https://doi.org/10.1016/j.ijrobp.2016.02.050
99 CK Glide-Hurst, JP Kim, D To, Y Hu, M Kadbi, T Nielsen, IJ Chetty. Four dimensional magnetic resonance imaging optimization and implementation for magnetic resonance imaging simulation. Pract Radiat Oncol 2015; 5(6): 433–442
https://doi.org/10.1016/j.prro.2015.06.006
100 C Paganelli, P Summers, M Bellomi, G Baroni, M Riboldi. Liver 4DMRI: a retrospective image-based sorting method. Med Phys 2015; 42(8): 4814–4821
https://doi.org/10.1118/1.4927252
101 AS Panandiker, A Winchell, R Loeffler, R Song, M Rolen, C Hillenbrand. 4DMRI provides more accurate renal motion estimation in IMRT in young children. Pract Radiat Oncol 2013; 3(2 Suppl 1): S1
https://doi.org/10.1016/j.prro.2013.01.008
102 F Han, Z Zhou, D Du, Y Gao, S Rashid, M Cao, N Shaverdian, JV Hegde, M Steinberg, P Lee, A Raldow, DA Low, K Sheng, Y Yang, P Hu. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): initial clinical experience on an MRI-guided radiotherapy system. Radiother Oncol 2018; 127(3): 467–473
https://doi.org/10.1016/j.radonc.2018.04.029
103 M Lustig, D Donoho, JM Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58(6): 1182–1195
https://doi.org/10.1002/mrm.21391
104 SG Lingala, Y Hu, E DiBella, M Jacob. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011; 30(5): 1042–1054
https://doi.org/10.1109/TMI.2010.2100850
105 R Otazo, E Candes, DK Sodickson. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 2015; 73(3): 1125–1136
https://doi.org/10.1002/mrm.25240
106 MS Asif, L Hamilton, M Brummer, J Romberg. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI. Magn Reson Med 2013; 70(3): 800–812
https://doi.org/10.1002/mrm.24524
107 N Zhao, D O’Connor, A Basarab, D Ruan, K Sheng. Motion compensated dynamic MRI reconstruction with local affine optical flow estimation. IEEE Trans Biomed Eng 2019; 66(11): 3050–3059
https://doi.org/10.1109/TBME.2019.2900037
108 Z Zhou, F Han, V Ghodrati, Y Gao, W Yin, Y Yang, P Hu. Parallel imaging and convolutional neural network combined fast MR image reconstruction: applications in low-latency accelerated real-time imaging. Med Phys 2019; 46(8): 3399–3413
https://doi.org/10.1002/mp.13628
109 S Biswas, HK Aggarwal, M Jacob. Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM. Magn Reson Med 2019; 82(1): 485–494
https://doi.org/10.1002/mrm.27706
110 L Xiang, Y Chen, W Chang, Y Zhan, W Lin, Q Wang, D Shen. Deep leaning based multi-modal fusion for fast MR reconstruction. IEEE Trans Biomed Eng 2019; 66(7): 2105–2114
https://doi.org/10.1109/TBME.2018.2883958
111 G Yang, S Yu, H Dong, G Slabaugh, PL Dragotti, X Ye, F Liu, S Arridge, J Keegan, Y Guo, D Firmin. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018; 37(6): 1310–1321
https://doi.org/10.1109/TMI.2017.2785879
112 J Schlemper, J Caballero, JV Hajnal, AN Price, D Rueckert. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018; 37(2): 491–503
https://doi.org/10.1109/TMI.2017.2760978
113 D Zhang, R Banalagay, J Wang, Y Zhao, JH Noble, BM Dawant. Two-level training of a 3D U-Net for accurate segmentation of the intra-cochlear anatomy in head CTs with limited ground truth training data. Proc SPIE Int Soc Opt Eng 2019; 10949
114 M Byra, M Wu, X Zhang, H Jang, YJ Ma, EY Chang, S Shah, J Du. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning. Magn Reson Med 2020; 83(3): 1109–1122
https://doi.org/10.1002/mrm.27969
115 J Park, J Yun, N Kim, B Park, Y Cho, HJ Park, M Song, M Lee, JB Seo. Fully automated lung lobe segmentation in volumetric chest CT with 3D U-Net: validation with intra- and extra-datasets. J Digit Imaging 2020; 33(1): 221–230
https://doi.org/10.1007/s10278-019-00223-1
116 D Nguyen, X Jia, D Sher, MH Lin, Z Iqbal, H Liu, S Jiang. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol 2019; 64(6): 065020
https://doi.org/10.1088/1361-6560/ab039b
117 Q Huang, J Sun, H Ding, X Wang, G Wang. Robust liver vessel extraction using 3D U-Net with variant dice loss function. Comput Biol Med 2018; 101: 153–162
https://doi.org/10.1016/j.compbiomed.2018.08.018
118 P Blanc-Durand, A Van Der Gucht, N Schaefer, E Itti, JO Prior. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One 2018; 13(4): e0195798
https://doi.org/10.1371/journal.pone.0195798
119 L Boldrini, JE Bibault, C Masciocchi, Y Shen, MI Bittner. Deep learning: a review for the radiation oncologist. Front Oncol 2019; 9: 977
https://doi.org/10.3389/fonc.2019.00977
120 B Ibragimov, D Toesca, D Chang, Y Yuan, A Koong, L Xing. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys 2018; 45(10): 4763–4774
https://doi.org/10.1002/mp.13122
121 G Valdes, Y Interian. Comment on ‘Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study’. Phys Med Biol 2018; 63(6): 068001
https://doi.org/10.1088/1361-6560/aaae23
122 X Zhen, J Chen, Z Zhong, B Hrycushko, L Zhou, S Jiang, K Albuquerque, X Gu. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys Med Biol 2017; 62(21): 8246–8263
https://doi.org/10.1088/1361-6560/aa8d09
123 ER Epp, H Weiss, B Djordjevic, A Santomasso. The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen. Radiat Res 1972; 52(2): 324–332
https://doi.org/10.2307/3573572
124 G Adrian, E Konradsson, M Lempart, S Back, C Ceberg, K Petersson. The FLASH effect depends on oxygen concentration. Br J Radiol 2020; 93(1106): 20190702
https://doi.org/10.1259/bjr.20190702
125 PG Maxim, SG Tantawi, BW Loo Jr. PHASER: a platform for clinical translation of FLASH cancer radiotherapy. Radiother Oncol 2019; 139: 28–33
https://doi.org/10.1016/j.radonc.2019.05.005
126 MC Vozenin, P De Fornel, K Petersson, V Favaudon, M Jaccard, JF Germond, B Petit, M Burki, G Ferrand, D Patin, H Bouchaab, M Ozsahin, F Bochud, C Bailat, P Devauchelle, J Bourhis. The advantage of FLASH radiotherapy confirmed in mini-pig and Cat-cancer patients. Clin Cancer Res 2019; 25(1): 35–42
https://doi.org/10.1158/1078-0432.CCR-17-3375
127 YM Zhu, AE Dean, N Horikoshi, C Heer, DR Spitz, D Gius. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest 2018; 128(9): 3682–3691
https://doi.org/10.1172/JCI120844
128 MS Alexander, JG Wilkes, SR Schroeder, GR Buettner, BA Wagner, J Du, K Gibson-Corley, BR O’Leary, DR Spitz, JM Buatti, DJ Berg, KL Bodeker, S Vollstedt, HA Brown, BG Allen, JJ Cullen. Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer. Cancer Res 2018; 78(24): 6838–6851
https://doi.org/10.1158/0008-5472.CAN-18-1680
129 JD Schoenfeld, ZA Sibenaller, KA Mapuskar, BA Wagner, KL Cramer-Morales, M Furqan, S Sandhu, TL Carlisle, MC Smith, T Abu Hejleh, DJ Berg, J Zhang, J Keech, KR Parekh, S Bhatia, V Monga, KL Bodeker, L Ahmann, S Vollstedt, H Brown, EPS Kauffman, ME Schall, RJ Hohl, GH Clamon, JD Greenlee, MA Howard, MK Schultz, BJ Smith, DP Riley, FE Domann, JJ Cullen, GR Buettner, JM Buatti, DR Spitz, BG Allen. Correction: O2.– and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 2017; 32(2): 268–268
https://doi.org/10.1016/j.ccell.2017.07.008
130 N Aykin-Burns, IM Ahmad, Y Zhu, LW Oberley, DR Spitz. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009; 418(1): 29–37
https://doi.org/10.1042/BJ20081258
131 JD Schoenfeld, ZA Sibenaller, KA Mapuskar, BA Wagner, KL Cramer-Morales, M Furqan, S Sandhu, TL Carlisle, MC Smith, T Abu Hejleh, DJ Berg, J Zhang, J Keech, KR Parekh, S Bhatia, V Monga, KL Bodeker, L Ahmann, S Vollstedt, H Brown, EPS Kauffman, ME Schall, RJ Hohl, GH Clamon, JD Greenlee, MA Howard, MK Shultz, BJ Smith, DP Riley, FE Domann, JJ Cullen, GR Buettner, JM Buatti, DR Spitz, BG Allen. O2.– and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 2017; 31(4): 487–500.e8
https://doi.org/10.1016/j.ccell.2017.02.018
132 EJ Hall. Radiobiology for the Radiologist. 2d ed. Hagerstown, MD: Medical Dept., Harper & Row, 1978
133 G Balakrishnan, A Zhao, MR Sabuncu, J Guttag, AV Dalca. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 2019; 38(8): 1788–1800
https://doi.org/10.1109/TMI.2019.2897538 pmid: 30716034
134 EJ Hall. Radiobiology for the Radiologist. 4th ed. Philadelphia: J.B. Lippincott, 1994
135 EJ Hall. Radiobiology for the Radiologist. 3rd ed. Philadelphia: Lippincott, 1988
136 SI Gutiontov, EJ Shin, B Lok, NY Lee, R Cabanillas. Intensity-modulated radiotherapy for head and neck surgeons. Head Neck 2016; 38(Suppl 1): E2368–E2373
https://doi.org/10.1002/hed.24338
137 BE Nelms, WA Tome, G Robinson, J Wheeler. Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer. Int J Radiat Oncol Biol Phys 2012; 82(1): 368–378
https://doi.org/10.1016/j.ijrobp.2010.10.019
138 J Castelli, A Simon, C Lafond, N Perichon, B Rigaud, E Chajon, B De Bari, M Ozsahin, J Bourhis, R de Crevoisier. Adaptive radiotherapy for head and neck cancer. Acta Oncol 2018; 57(10): 1284–1292
https://doi.org/10.1080/0284186X.2018.1505053
139 V Gupta, Y Wang, A Mendez Romero, A Myronenko, P Jordan, C Maurer, B Heijmen, M Hoogeman. Fast and robust adaptation of organs-at-risk delineations from planning scans to match daily anatomy in pre-treatment scans for online-adaptive radiotherapy of abdominal tumors. Radiother Oncol 2018; 127(2): 332–338
https://doi.org/10.1016/j.radonc.2018.02.014
140 JM Pollard, Z Wen, R Sadagopan, J Wang, GS Ibbott. The future of image-guided radiotherapy will be MR guided. Br J Radiol 2017; 90(1073): 20160667
https://doi.org/10.1259/bjr.20160667
141 X Han, MS Hoogeman, PC Levendag, LS Hibbard, DN Teguh, P Voet, AC Cowen, TK Wolf. Atlas-based auto-segmentation of head and neck CT images. Med Image Comput Comput Assist Interv 2008; 11(Pt 2): 434–441
https://doi.org/10.1007/978-3-540-85990-1_52
142 PY Bondiau, G Malandain, S Chanalet, PY Marcy, JL Habrand, F Fauchon, P Paquis, A Courdi, O Commowick, I Rutten, N Ayache. Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int J Radiat Oncol Biol Phys 2005; 61(1): 289–298
https://doi.org/10.1016/j.ijrobp.2004.08.055
143 MG Roberts, TF Cootes, JE Adams. Vertebral shape: automatic measurement with dynamically sequenced active appearance models. In: Duncan JS, Gerig G. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2005. Lecture Notes in Computer Science, vol 3750. Springer, Berlin, Heidelberg. 2005
144 KD Fritscher, M Peroni, P Zaffino, MF Spadea, R Schubert, G Sharp. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Med Phys 2014; 41(5): 051910
https://doi.org/10.1118/1.4871623
145 AA Setio, F Ciompi, G Litjens, P Gerke, C Jacobs, SJ van Riel, MM Wille, M Naqibullah, CI Sanchez, B van Ginneken. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016; 35(5): 1160–1169
https://doi.org/10.1109/TMI.2016.2536809
146 D Qi, C Hao, Y Lequan, Z Lei, Q Jing, W Defeng, VC Mok, S Lin, H Pheng-Ann. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016; 35(5): 1182–1195
https://doi.org/10.1109/TMI.2016.2528129
147 X Li, H Chen, X Qi, Q Dou, CW Fu, PA Heng. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 2018; 37(12): 2663–2674
https://doi.org/10.1109/TMI.2018.2845918
148 L Chen, P Bentley, K Mori, K Misawa, M Fujiwara, D Rueckert. DRINet for medical image segmentation. IEEE Trans Med Imaging 2018; 37(11): 2453–2462
https://doi.org/10.1109/TMI.2018.2835303
149 P Moeskops, MA Viergever, AM Mendrik, LS de Vries, MJ Benders, I Isgum. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 2016; 35(5): 1252–1261
https://doi.org/10.1109/TMI.2016.2548501
150 X Cao, J Yang, L Wang, Z Xue, Q Wang, D Shen. Deep learning based inter-modality image registration supervised by intra-modality similarity. Mach Learn Med Imaging 2018; 11046: 55–63
https://doi.org/10.1007/978-3-030-00919-9_7
151 G Haskins, J Kruecker, U Kruger, S Xu, PA Pinto, BJ Wood, P Yan. Learning deep similarity metric for 3D MR-TRUS image registration. Int J CARS 2019; 14(3): 417–425
https://doi.org/10.1007/s11548-018-1875-7
152 X Zhu, M Ding, T Huang, X Jin, X Zhang. PCANet-based structural representation for nonrigid multimodal medical image registration. Sensors (Basel) 2018; 18(5): 1477
https://doi.org/10.3390/s18051477
153 B Ibragimov, L Xing. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys 2017; 44(2): 547–557
https://doi.org/10.1002/mp.12045
154 N Tong, S Gou, S Yang, D Ruan, K Sheng. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phys 2018; 45(10): 4558–4567
https://doi.org/10.1002/mp.13147
155 N Tong, S Gou, S Yang, M Cao, K Sheng. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Med Phys 2019; 46(6): 2669–2682
https://doi.org/10.1002/mp.13553
156 EJ Hall. Radiobiology for the Radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2000
157 EJ Hall, AJ Giaccia. Radiobiology for the Radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2006
158 ZS Wang, LF Wei, L Wang, YZ Gao, WF Chen, DG Shen. Hierarchical vertex regression-based segmentation of head and neck CT images for radiotherapy planning. IEEE Trans Image Process 2018; 27(2): 923–937
https://doi.org/10.1109/TIP.2017.2768621
159 KL Moore, RS Brame, DA Low, S Mutic. Experience-based quality control of clinical intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 2011; 81(2): 545–551
https://doi.org/10.1016/j.ijrobp.2010.11.030
160 L Yuan, Y Ge, WR Lee, FF Yin, JP Kirkpatrick, QJ Wu. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys 2012; 39(11): 6868–6878
https://doi.org/10.1118/1.4757927
161 BE Nelms, G Robinson, J Markham, K Velasco, S Boyd, S Narayan, J Wheeler, ML Sobczak. Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol 2012; 2(4): 296–305
https://doi.org/10.1016/j.prro.2011.11.012
162 S Shiraishi, KL Moore. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy. Med Phys 2016; 43(1): 378–387
https://doi.org/10.1118/1.4938583
163 C McIntosh, TG Purdie. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning. Phys Med Biol 2017; 62(2): 415–431
https://doi.org/10.1088/1361-6560/62/2/415
164 BP Ziemer, S Shiraishi, JA Hattangadi-Gluth, P Sanghvi, KL Moore. Fully automated, comprehensive knowledge-based planning for stereotactic radiosurgery: preclinical validation through blinded physician review. Pract Radiat Oncol 2017; 7(6): e569–e578
https://doi.org/10.1016/j.prro.2017.04.011
165 B Wu, F Ricchetti, G Sanguineti, M Kazhdan, P Simari, M Chuang, R Taylor, R Jacques, T McNutt. Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys 2009; 36(12): 5497–5505
https://doi.org/10.1118/1.3253464
166 X Zhu, Y Ge, T Li, D Thongphiew, FF Yin, QJ Wu. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 2011; 38(2): 719–726
https://doi.org/10.1118/1.3539749
167 A Tran, K Woods, D Nguyen, VY Yu, T Niu, M Cao, P Lee, K Sheng. Predicting liver SBRT eligibility and plan quality for VMAT and 4p plans. Radiat Oncol 2017; 12(1): 70
https://doi.org/10.1186/s13014-017-0806-z
168 D Nguyen, T Long, X Jia, W Lu, X Gu, Z Iqbal, S Jiang. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep 2019; 9(1): 1076
https://doi.org/10.1038/s41598-018-37741-x
169 K Men, H Geng, H Zhong, Y Fan, A Lin, Y Xiao. A deep learning model for predicting xerostomia due to radiotherapy for head-and-neck squamous cell carcinoma in the RTOG 0522 clinical trial. Int J Radiat Oncol Biol Phys 2019; 105(2): 440–447
https://doi.org/10.1016/j.ijrobp.2019.06.009
170 M Ma. Buyyounouski MK, Vasudevan V, Xing L, Yang Y. Dose distribution prediction in isodose feature-preserving voxelization domain using deep convolutional neural network. Med Phys 2019; 46: 2978–2987
https://doi.org/10.1002/mp.13618
171 M Ma, N Kovalchuk, MK Buyyounouski, L Xing, Y Yang. Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Phys Med Biol 2019; 64(12): 125017
https://doi.org/10.1088/1361-6560/ab2146
172 Z Liu, J Fan, M Li, H Yan, Z Hu, P Huang, Y Tian, J Miao, J Dai. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys 2019; 46(5): 1972–1983
https://doi.org/10.1002/mp.13490
173 T Kajikawa, N Kadoya, K Ito, Y Takayama, T Chiba, S Tomori, K Takeda, K Jingu. Automated prediction of dosimetric eligibility of patients with prostate cancer undergoing intensity-modulated radiation therapy using a convolutional neural network. Radiological Phys Technol 2018; 11(3): 320–327
https://doi.org/10.1007/s12194-018-0472-3
174 B Heijmen, P Voet, D Fransen, J Penninkhof, M Milder, H Akhiat, P Bonomo, M Casati, D Georg, G Goldner, A Henry, J Lilley, F Lohr, L Marrazzo, S Pallotta, R Pellegrini, Y Seppenwoolde, G Simontacchi, V Steil, F Stieler, S Wilson, S Breedveld. Fully automated, multi-criterial planning for Volumetric Modulated Arc Therapy — an international multi-center validation for prostate cancer. Radiother Oncol 2018; 128(2): 343–348
https://doi.org/10.1016/j.radonc.2018.06.023
175 MJ van Duren-Koopman, JP Tol, M Dahele, E Bucko, P Meijnen, BJ Slotman, WF Verbakel. Personalized automated treatment planning for breast plus locoregional lymph nodes using Hybrid RapidArc. Pract Radiat Oncol 2018; 8(5): 332–341
https://doi.org/10.1016/j.prro.2018.03.008
176 A Babier, JJ Boutilier, AL McNiven, TCY Chan. Knowledge-based automated planning for oropharyngeal cancer. Med Phys 2018; 45(7): 2875–2883
https://doi.org/10.1002/mp.12930
177 Y Zhang, T Li, H Xiao, W Ji, M Guo, Z Zeng, J Zhang. A knowledge-based approach to automated planning for hepatocellular carcinoma. J Appl Clin Med Phys 2018; 19(1): 50–59
https://doi.org/10.1002/acm2.12219
178 BP Ziemer, P Sanghvi, J Hattangadi-Gluth, KL Moore. Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases. Med Phys 2017; 44(10): 5001–5009
https://doi.org/10.1002/mp.12479
179 BP Ziemer, S Shiraishi, JA Hattangadi-Gluth, P Sanghvi, KL Moore. Fully automated, comprehensive knowledge-based planning for stereotactic radiosurgery: preclinical validation through blinded physician review. Pract Radiat Oncol 2017; 7(6): e569–e578
https://doi.org/10.1016/j.prro.2017.04.011
180 D Buergy, AW Sharfo, BJ Heijmen, PW Voet, S Breedveld, F Wenz, F Lohr, F Stieler. Fully automated treatment planning of spinal metastases — a comparison to manual planning of Volumetric Modulated Arc Therapy for conventionally fractionated irradiation. Radiat Oncol 2017; 12(1): 33
https://doi.org/10.1186/s13014-017-0767-2
181 H Wu, F Jiang, H Yue, H Zhang, K Wang, Y Zhang. Applying a RapidPlan model trained on a technique and orientation to another: a feasibility and dosimetric evaluation. Radiat Oncol 2016; 11(1): 108
https://doi.org/10.1186/s13014-016-0684-9
182 J Krayenbuehl, I Norton, G Studer, M Guckenberger. Evaluation of an automated knowledge based treatment planning system for head and neck. Radiat Oncol 2015; 10(1): 226
https://doi.org/10.1186/s13014-015-0533-2
183 A Fogliata, G Nicolini, A Clivio, E Vanetti, S Laksar, A Tozzi, M Scorsetti, L Cozzi. A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers. Radiat Oncol 2015; 10(1): 220
https://doi.org/10.1186/s13014-015-0530-5
184 M Schmidt, JY Lo, S Grzetic, C Lutzky, DM Brizel, SK Das. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans. Med Phys 2015; 42(8): 4428–4434
https://doi.org/10.1118/1.4923174
185 J Fan, J Wang, Z Chen, C Hu, Z Zhang, W Hu. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys 2019; 46(1): 370–381
https://doi.org/10.1002/mp.13271
186 A Landers, D O’Connor, D Ruan, K Sheng. Automated 4π radiotherapy treatment planning with evolving knowledge-base. Med Phys 2019; 46(9): 3833–3843
https://doi.org/10.1002/mp.13682
187 A Landers, R Neph, F Scalzo, D Ruan, K Sheng. Performance comparison of knowledge-based dose prediction techniques based on limited patient data. Technol Cancer Res Treat 2018; 17: 1533033818811150
https://doi.org/10.1177/1533033818811150
188 HH Li, Y Wu, D Yang, S Mutic. Software tool for physics chart checks. Pract Radiat Oncol 2014; 4(6): e217–e225
https://doi.org/10.1016/j.prro.2014.03.001
189 WW Yim, M Yetisgen, WP Harris, SW Kwan. Natural language processing in oncology: a review. JAMA Oncol 2016; 2(6): 797–804
https://doi.org/10.1001/jamaoncol.2016.0213
190 Y Interian, V Rideout, VP Kearney, E Gennatas, O Morin, J Cheung, T Solberg, G Valdes. Deep nets vs expert designed features in medical physics: an IMRT QA case study. Med Phys 2018; 45(6): 2672–2680
https://doi.org/:10.1002/mp.12890
191 MJ Nyflot, P Thammasorn, LS Wootton, EC Ford, WA Chaovalitwongse. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Med Phys 2019; 46(2): 456–464
192 S Tomori, N Kadoya, Y Takayama, T Kajikawa, K Shima, K Narazaki, K Jingu. A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance. Med Phys 2018; 45(9): 4055–4065
https://doi.org/10.1002/mp.13112
193 R Shiradkar, TK Podder, A Algohary, S Viswanath, RJ Ellis, A Madabhushi. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 2016; 11(1): 148
https://doi.org/10.1186/s13014-016-0718-3
194 H Arimura, M Soufi, H Kamezawa, K Ninomiya, M Yamada. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res (Tokyo) 2019; 60(1): 150–157
https://doi.org/10.1093/jrr/rry077
195 HJ Aerts, ER Velazquez, RT Leijenaar, C Parmar, P Grossmann, S Carvalho, J Bussink, R Monshouwer, B Haibe-Kains, D Rietveld, F Hoebers, MM Rietbergen, CR Leemans, A Dekker, J Quackenbush, RJ Gillies, P Lambin. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5(1): 4006
https://doi.org/10.1038/ncomms5006
196 C Bergom, CM West, DS Higginson, ME Abazeed, B Arun, SM Bentzen, JL Bernstein, JD Evans, NK Gerber, SL Kerns, J Keen, JK Litton, AS Reiner, N Riaz, BS Rosenstein, GO Sawakuchi, SF Shaitelman, SN Powell, WA Woodward. The implications of genetic testing on radiotherapy decisions: a guide for radiation oncologists. Int J Radiat Oncol Biol Phys 2019; 105(4): 698–712
https://doi.org/10.1016/j.ijrobp.2019.07.026
197 I El Naqa, SL Kerns, J Coates, Y Luo, C Speers, CML West, BS Rosenstein, RK Ten Haken. Radiogenomics and radiotherapy response modeling. Phys Med Biol 2017; 62(16): R179–R206
https://doi.org/10.1088/1361-6560/aa7c55
198 M Sollini, L Cozzi, A Chiti, M Kirienko. Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol 2018; 99: 1–8
https://doi.org/10.1016/j.ejrad.2017.12.004
199 S Rathore, H Akbari, J Doshi, G Shukla, M Rozycki, M Bilello, R Lustig, C Davatzikos. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging (Bellingham) 2018; 5(2): 021219
https://doi.org/10.1117/1.JMI.5.2.021219
200 M Pota, E Scalco, G Sanguineti, A Farneti, GM Cattaneo, G Rizzo, M Esposito. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artif Intell Med 2017; 81: 41–53
https://doi.org/10.1016/j.artmed.2017.03.004
201 S Leger, A Zwanenburg, K Pilz, F Lohaus, A Linge, K Zophel, J Kotzerke, A Schreiber, I Tinhofer, V Budach, A Sak, M Stuschke, P Balermpas, C Rodel, U Ganswindt, C Belka, S Pigorsch, SE Combs, D Monnich, D Zips, M Krause, M Baumann, EGC Troost, S Lock, C Richter. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 2017; 7(1): 13206
https://doi.org/10.1038/s41598-017-13448-3
202 M. D. Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients. Sci Rep 2018; 8(1): 1524
https://doi.org/10.1038/s41598-017-14687-0
203 W Sun, M Jiang, J Dang, P Chang, FF Yin. Effect of machine learning methods on predicting NSCLC overall survival time based on radiomics analysis. Radiat Oncol 2018; 13(1): 197
https://doi.org/10.1186/s13014-018-1140-9
204 R Sun, EJ Limkin, M Vakalopoulou, L Dercle, S Champiat, SR Han, L Verlingue, D Brandao, A Lancia, S Ammari, A Hollebecque, JY Scoazec, A Marabelle, C Massard, JC Soria, C Robert, N Paragios, E Deutsch, C Ferte. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018; 19(9): 1180–1191
https://doi.org/10.1016/S1470-2045(18)30413-3
205 JC Peeken, M Bernhofer, MB Spraker, D Pfeiffer, M Devecka, A Thamer, MA Shouman, A Ott, F Nusslin, NA Mayr, B Rost, MJ Nyflot, SE Combs. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. Radiother Oncol 2019; 135: 187–196
https://doi.org/10.1016/j.radonc.2019.01.004
206 S Li, K Wang, Z Hou, J Yang, W Ren, S Gao, F Meng, P Wu, B Liu, J Liu, J Yan. Use of radiomics combined with machine learning method in the recurrence patterns after intensity-modulated radiotherapy for nasopharyngeal carcinoma: a preliminary study. Front Oncol 2018; 8: 648
https://doi.org/10.3389/fonc.2018.00648
207 P Giraud, P Giraud, A Gasnier, R El Ayachy, S Kreps, JP Foy, C Durdux, F Huguet, A Burgun, JE Bibault. Radiomics and machine learning for radiotherapy in head and neck cancers. Front Oncol 2019; 9: 174
https://doi.org/10.3389/fonc.2019.00174
208 H Elhalawani, TA Lin, S Volpe, ASR Mohamed, AL White, J Zafereo, AJ Wong, JE Berends, S AboHashem, B Williams, JM Aymard, A Kanwar, S Perni, CD Rock, L Cooksey, S Campbell, P Yang, K Nguyen, RB Ger, CE Cardenas, XJ Fave, C Sansone, G Piantadosi, S Marrone, R Liu, C Huang, K Yu, T Li, Y Yu, Y Zhang, H Zhu, JS Morris, V Baladandayuthapani, JW Shumway, A Ghosh, A Pöhlmann, HA Phoulady, V Goyal, G Canahuate, GE Marai, D Vock, SY Lai, DS Mackin, LE Court, J Freymann, K Farahani, J Kaplathy-Cramer, CD Fuller. Machine learning applications in head and neck radiation oncology: lessons from open-source radiomics challenges. Front Oncol 2018; 8: 294
https://doi.org/10.3389/fonc.2018.00294
209 EEC de Jong, W van Elmpt, S Rizzo, A Colarieti, G Spitaleri, RTH Leijenaar, A Jochems, LEL Hendriks, EGC Troost, B Reymen, AC Dingemans, P Lambin. Applicability of a prognostic CT-based radiomic signature model trained on stage I–III non-small cell lung cancer in stage IV non-small cell lung cancer. Lung Cancer 2018; 124: 6–11
https://doi.org/10.1016/j.lungcan.2018.07.023
210 YJ Cha, WI Jang, MS Kim, HJ Yoo, EK Paik, HK Jeong, SM Youn. Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res 2018; 38(9): 5437–5445
https://doi.org/10.21873/anticanres.12875
211 G Buizza, I Toma-Dasu, M Lazzeroni, C Paganelli, M Riboldi, Y Chang, O Smedby, C Wang. Early tumor response prediction for lung cancer patients using novel longitudinal pattern features from sequential PET/CT image scans. Phys Med 2018; 54: 21–29
https://doi.org/10.1016/j.ejmp.2018.09.003
212 A Hosny, C Parmar, TP Coroller, P Grossmann, R Zeleznik, A Kumar, J Bussink, RJ Gillies, RH Mak, H Aerts. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 2018; 15(11): e1002711
https://doi.org/10.1371/journal.pmed.1002711
213 S Cui, Y Luo, HH Tseng, RK Ten Haken, I El Naqa. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Med Phys 2019; 46(5): 2497–2511
https://doi.org/10.1002/mp.13497
214 S Cui, Y Luo, HH Tseng, RK Ten Haken, I El Naqa. Artificial neural network with composite architectures for prediction of local control in radiotherapy. IEEE Trans Radiat Plasma Med Sci 2019; 3(2): 242–249
https://doi.org/10.1109/TRPMS.2018.2884134
215 J Lee, JY An, MG Choi, SH Park, ST Kim, JH Lee, TS Sohn, JM Bae, S Kim, H Lee, BH Min, JJ Kim, WK Jeong, DI Choi, KM Kim, WK Kang, M Kim, SW Seo. Deep learning-based survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric cancer. JCO Clin Cancer Inform 2018; 2(2): 1–14
https://doi.org/10.1200/CCI.17.00065
216 IS Boon, TPT Au Yong, CS Boon. Assessing the role of artificial intelligence (AI) in clinical oncology: utility of machine learning in radiotherapy target volume delineation. Medicines (Basel) 2018; 5(4): 131
https://doi.org/10.3390/medicines5040131
217 Y Xu, A Hosny, R Zeleznik, C Parmar, T Coroller, I Franco, RH Mak, H Aerts. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019; 25(11): 3266–3275
https://doi.org/10.1158/1078-0432.CCR-18-2495
218 B Ehteshami Bejnordi, M Veta, P Johannes van Diest, B van Ginneken, N Karssemeijer, G Litjens, J van der Laak; the CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318(22): 2199–2210
https://doi.org/10.1001/jama.2017.14585
219 P Grossmann, O Stringfield, N El-Hachem, MM Bui, E Rios Velazquez, C Parmar, RT Leijenaar, B Haibe-Kains, P Lambin, RJ Gillies, HJ Aerts. Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017; 6: e23421
https://doi.org/10.7554/eLife.23421
220 M Zanfardino, K Pane, P Mirabelli, M Salvatore, M Franzese. TCGA-TCIA impact on radiogenomics cancer research: a systematic review. Int J Mol Sci 2019; 20(23): 6033
https://doi.org/10.3390/ijms20236033
221 K Clark, B Vendt, K Smith, J Freymann, J Kirby, P Koppel, S Moore, S Phillips, D Maffitt, M Pringle, L Tarbox, F Prior. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6): 1045–1057
https://doi.org/10.1007/s10278-013-9622-7
222 K Tomczak, P Czerwinska, M Wiznerowicz. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015; 19(1A): A68–A77
https://doi.org/10.5114/wo.2014.47136
223 Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: a bioinformatic approach. Cancer Lett 2017; 403: 37–47
https://doi.org/10.1016/j.canlet.2017.05.023 pmid: 28619524
[1] Joseph JY Sung, Nicholas CH Poon. Artificial intelligence in gastroenterology: where are we heading?[J]. Front. Med., 2020, 14(4): 511-517.
[2] Yang Jiao, Zhan Zhang, Ting Zhang, Wen Shi, Yan Zhu, Jie Hu, Qin Zhang. Development of an artificial intelligence diagnostic model based on dynamic uncertain causality graph for the differential diagnosis of dyspnea[J]. Front. Med., 2020, 14(4): 488-497.
[3] Xiao-Yun Zhou, Yao Guo, Mali Shen, Guang-Zhong Yang. Application of artificial intelligence in surgery[J]. Front. Med., 2020, 14(4): 417-430.
[4] Allison J. Navarrete-Welton, Daniel A. Hashimoto. Current applications of artificial intelligence for intraoperative decision support in surgery[J]. Front. Med., 2020, 14(4): 369-381.
[5] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[6] Yang Wang, Huifang Zhou, Xianqun Fan. The effect of orbital radiation therapy on thyroid-associated orbitopathy complicated with dysthyroid optic neuropathy[J]. Front. Med., 2017, 11(3): 359-364.
[7] Guo-Liang Jiang. Particle therapy for cancers: a new weapon in radiation therapy[J]. Front Med, 2012, 6(2): 165-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed