Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (4) : 562-574    https://doi.org/10.1007/s11684-020-0771-z
REVIEW
Clinical applications of neurolinguistics in neurosurgery
Peng Wang1, Zehao Zhao1, Linghao Bu1, Nijiati Kudulaiti1, Qiao Shan1, Yuyao Zhou1, N. U. Farrukh Hameed1, Yangming Zhu1, Lei Jin1, Jie Zhang1,2, Junfeng Lu1,2, Jinsong Wu1,2,3()
1. Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai 200040, China
2. Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai 201100, China
3. Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai 200135, China
 Download: PDF(2096 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The protection of language function is one of the major challenges of brain surgery. Over the past century, neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identification of language-related brain regions. Neurosurgeons have investigated the neural mechanism of language, developed neurolinguistics theory, and provided unique evidence to further understand the neural basis of language functions by using intraoperative cortical and subcortical electrical stimulation. With the emergence of modern neuroscience techniques and dramatic advances in language models over the last 25 years, novel language mapping methods have been applied in the neurosurgical practice to help neurosurgeons protect the brain and reduce morbidity. The rapid advancements in brain--computer interface have provided the perfect platform for the combination of neurosurgery and neurolinguistics. In this review, the history of neurolinguistics models, advancements in modern technology, role of neurosurgery in language mapping, and modern language mapping methods (including noninvasive neuroimaging techniques and invasive cortical electroencephalogram) are presented.

Keywords neurolinguistics      language mapping      dual pathway model      neurosurgery     
Corresponding Author(s): Jinsong Wu   
Just Accepted Date: 20 January 2021   Online First Date: 14 May 2021    Issue Date: 23 September 2021
 Cite this article:   
Peng Wang,Zehao Zhao,Linghao Bu, et al. Clinical applications of neurolinguistics in neurosurgery[J]. Front. Med., 2021, 15(4): 562-574.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0771-z
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I4/562
Fig.1  Fiber anatomy of the dual-pathway language model. The dorsal pathway consists of SLF/AF. The ventral pathway consists of UF, IFOF, and ILF. FAT, frontal aslant tract; PreCS, precentral sulcus; CS, central sulcus; PostCS, postcentral sulcus; SLF, superior longitudinal fasciculus; TP, temporo-parietal; AF, arcuate fasciculus; IFOF, inferior fronto-occipital fasciculus; UF, uncinate fasciculus; ILF, inferior longitudinal fasciculus.
Fibers Originates Passes Terminates
Dorsal pathway
AF Posterior part of STG/MTG SMG/central lobe Opercular part of IFG, ventral part of precentral gyrus
SLF III SMG Central lobe Opercular part of IFG, ventral part of precentral gyrus
SLF II Posterior part of parietal lobe SMG/AG/central lobe Posterior part of MFG
SLF Tp Posterior part of MTG and ITG AG
Ventral pathway
IFOF MOG/SOG AG/STG/temporal stem/anterior part of insular Triangular part of IFG/anterior part of MFG and SFG
UF Temporal pole Limen of insular Orbital part of IFG/orbital gyri
ILF MOG, IOG MTG, ITG Temporal pole
Auxiliary pathway
FAT SMA Opercular part of IFG
Tab.1  Fiber anatomy of the dual-pathway language model [811]
Fig.2  Process of speech production. The Levelt–Roelofs–Meyer (LRM) shows the process of picture naming. The LRM model is a basic model to elaborate the whole-word production processing and shows the activation process of different brain regions over time from the beginning of picture onset to speech.
Fig.3  Somatic sensorimotor map of articulators reconstructed based on Penfield’s results [21]. (A) The motor areas of articulators (red) are located in the ventral part of the precentral gyrus. (B) The sensory areas (blue) are located in the ventral part of the postcentral gyrus.
Fig.4  Dual-pathway language model constructed using DTI. AF, arcuate fasciculus; SLF, superior longitudinal fasciculus; TP, temporo-parietal; IFOF, inferior fronto-occipital fasciculus; UF, uncinate fasciculus; ILF, inferior longitudinal fasciculus.
Fig.5  A case of left middle frontal gyrus low-grade glioma. (A) T2-flair imaging and enhanced T1 MRI imaging show the tumor located at the left middle frontal gyrus without enhancement. (B) Functional MRI shows the bold signal of motor- and language-related cortices. (C) DTI shows the language-related tracts. The green fiber is the arcuate fasciculus, and the white fiber is the Aslant tract. (D) Cortical mapping before tumor resection. Tag 17 shows the anomia site. Tag 18 is the hesitation site of the anomia. Tag 15 shows the speech arrest site. Tags 7, 8, and 12 show the cortex related to lip and jaw movements. Tags 2 and 3 show the hand motor-related cortex. (E) Cortical and subcortical mapping after tumor resection. P tags show the subcortical cerebrospinal fibers. Tag 18 is a hesitation functional site of speech impairment, and the middle frontal gyrus is not a typical language-eloquent site. The area is resected to obtain a good resection rate of the tumor.
Fig.6  Comparison of spatial and temporal resolutions in human neurophysiology (created with reference to Chiong et al.’s research findings [96]).
1 P Tremblay, AS Dick. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang 2016; 162: 60–71
https://doi.org/10.1016/j.bandl.2016.08.004 pmid: 27584714
2 T Ueno, S Saito, TT Rogers, MA Lambon Ralph. Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron 2011; 72(2): 385–396
https://doi.org/10.1016/j.neuron.2011.09.013 pmid: 22017995
3 D Poeppel, K Emmorey, G Hickok, L Pylkkänen. Towards a new neurobiology of language. J Neurosci 2012; 32(41): 14125–14131
https://doi.org/10.1523/JNEUROSCI.3244-12.2012 pmid: 23055482
4 G Hickok, D Poeppel. The cortical organization of speech processing. Nat Rev Neurosci 2007; 8(5): 393–402
https://doi.org/10.1038/nrn2113 pmid: 17431404
5 M Catani, DK Jones, DH Ffytche. Perisylvian language networks of the human brain. Ann Neurol 2005; 57(1): 8–16
https://doi.org/10.1002/ana.20319 pmid: 15597383
6 EF Chang, KP Raygor, MS Berger. Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 2015; 122(2): 250–261
https://doi.org/10.3171/2014.10.JNS132647 pmid: 25423277
7 N Zhang, M Xia, T Qiu, X Wang, CP Lin, Q Guo, J Lu, Q Wu, D Zhuang, Z Yu, F Gong, NU Farrukh Hameed, Y He, J Wu, L Zhou. Reorganization of cerebro-cerebellar circuit in patients with left hemispheric gliomas involving language network: a combined structural and resting-state functional MRI study. Hum Brain Mapp 2018; 39(12): 4802–4819
https://doi.org/10.1002/hbm.24324 pmid: 30052314
8 K Yagmurlu, EH Middlebrooks, N Tanriover, AL Rhoton Jr. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 2016; 124(5): 1396–1405
https://doi.org/10.3171/2015.5.JNS15455 pmid: 26587654
9 JC Fernandez-Miranda, S Pathak, W Schneider. High-definition fiber tractography and language. J Neurosurg 2010; 113(1): 156––158
https://doi.org/10.3171/2009.10.JNS091460 pmid: 20450278
10 JC Fernández-Miranda, AL Rhoton Jr, J Alvarez-Linera, Y Kakizawa, C Choi, EP de Oliveira. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 2008; 62(6 Suppl 3): 989–1028
https://doi.org/10.1227/01.neu.0000333767.05328.49 pmid: 18695585
11 JC Fernandez-Miranda, S Pathak, J Engh, K Jarbo, T Verstynen, FC Yeh, Y Wang, A Mintz, F Boada, W Schneider, R Friedlander. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 2012; 71(2): 430–453
https://doi.org/10.1227/NEU.0b013e3182592faa pmid: 22513841
12 WJ Levelt, A Roelofs, AS Meyer. A theory of lexical access in speech production. Behav Brain Sci 1999; 22(1): 1–38
https://doi.org/10.1017/S0140525X99001776 pmid: 11301520
13 P Indefrey, WJ Levelt. The spatial and temporal signatures of word production components. Cognition 2004; 92(1-2): 101–144
https://doi.org/10.1016/j.cognition.2002.06.001 pmid: 15037128
14 P Indefrey. The spatial and temporal signatures of word production components: a critical update. Front Psychol 2011; 2: 255
https://doi.org/10.3389/fpsyg.2011.00255 pmid: 22016740
15 E Mandonnet, P Gatignol, H Duffau. Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 2009; 111(7): 601–605
https://doi.org/10.1016/j.clineuro.2009.03.007 pmid: 19414212
16 AC Vogel, SE Petersen, BL Schlaggar. The VWFA: it’s not just for words anymore. Front Hum Neurosci 2014; 8: 88
https://doi.org/10.3389/fnhum.2014.00088 pmid: 24688462
17 JD Breshears, AM Molinaro, EF Chang. A probabilistic map of the human ventral sensorimotor cortex using electrical stimulation. J Neurosurg 2015; 123(2): 340–349
https://doi.org/10.3171/2014.11.JNS14889 pmid: 25978714
18 W Penfield, L Roberts. Speech and brain mechanisms. New Jersey: Princeton University Press,1959
19 NF Dronkers, O Plaisant, MT Iba-Zizen, EA Cabanis. Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 2007; 130(5): 1432–1441
https://doi.org/10.1093/brain/awm042 pmid: 17405763
20 GA Ojemann, HA Whitaker. Language localization and variability. Brain Lang 1978; 6(2): 239–260
https://doi.org/10.1016/0093-934X(78)90061-5 pmid: 728789
21 W Penfield, E Boldrey. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937; 60(4): 389–443
https://doi.org/10.1093/brain/60.4.389
22 HA Whitaker, GA Ojemann. Graded localisation of naming from electrical stimulation mapping of left cerebral cortex. Nature 1977; 270(5632): 50–51
https://doi.org/10.1038/270050a0 pmid: 927514
23 G Ojemann, J Ojemann, E Lettich, M Berger. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989; 71(3): 316–326
https://doi.org/10.3171/jns.1989.71.3.0316 pmid: 2769383
24 MS Berger, GA Ojemann. Intraoperative brain mapping techniques in neuro-oncology. Stereotact Funct Neurosurg 1992; 58(1-4): 153–161
https://doi.org/10.1159/000098989 pmid: 1439333
25 N Sanai, Z Mirzadeh, MS Berger. Functional outcome after language mapping for glioma resection. N Engl J Med 2008; 358(1): 18–27
https://doi.org/10.1056/NEJMoa067819 pmid: 18172171
26 MC Tate, G Herbet, S Moritz-Gasser, JE Tate, H Duffau. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 2014; 137(10): 2773–2782
https://doi.org/10.1093/brain/awu168 pmid: 24970097
27 J Wu, J Lu, H Zhang, J Zhang, C Yao, D Zhuang, T Qiu, Q Guo, X Hu, Y Mao, L Zhou. Direct evidence from intraoperative electrocortical stimulation indicates shared and distinct speech production center between Chinese and English languages. Hum Brain Mapp 2015; 36(12): 4972–4985
https://doi.org/10.1002/hbm.22991 pmid: 26351094
28 H Duffau, L Capelle, N Sichez, D Denvil, M Lopes, JP Sichez, A Bitar, D Fohanno. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 2002; 125(1): 199–214
https://doi.org/10.1093/brain/awf016 pmid: 11834604
29 C Cheung, EF Chang. Real-time, time-frequency mapping of event-related cortical activation. J Neural Eng 2012; 9(4): 046018
https://doi.org/10.1088/1741-2560/9/4/046018 pmid: 22814190
30 RJ Dym, J Burns, K Freeman, ML Lipton. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology 2011; 261(2): 446–455
https://doi.org/10.1148/radiol.11101344 pmid: 21803921
31 PR Bauer, JB Reitsma, BM Houweling, CH Ferrier, NF Ramsey. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J Neurol Neurosurg Psychiatry 2014; 85(5): 581–588
https://doi.org/10.1136/jnnp-2013-305659 pmid: 23986313
32 GE Doucet, D Pustina, C Skidmore, A Sharan, MR Sperling, JI Tracy. Resting-state functional connectivity predicts the strength of hemispheric lateralization for language processing in temporal lobe epilepsy and normals. Hum Brain Mapp 2015; 36(1): 288–303
https://doi.org/10.1002/hbm.22628 pmid: 25187327
33 MN DeSalvo, N Tanaka, L Douw, CL Leveroni, BR Buchbinder, DN Greve, SM Stufflebeam. Resting-state functional MR imaging for determining language laterality in intractable epilepsy. Radiology 2016; 281(1): 264–269
https://doi.org/10.1148/radiol.2016141010 pmid: 27467465
34 KA Smitha, KM Arun, PG Rajesh, B Thomas, A Radhakrishnan, PS Sarma, C Kesavadas. Resting fMRI as an alternative for task-based fMRI for language lateralization in temporal lobe epilepsy patients: a study using independent component analysis. Neuroradiology 2019; 61(7): 803–810
https://doi.org/10.1007/s00234-019-02209-w pmid: 31020344
35 L Junck, SL Hervey-Jumper, O Sagher. Resection of gliomas around language areas: can fMRI contribute? Neurology 2015; 84(6): 550–551
https://doi.org/10.1212/WNL.0000000000001241 pmid: 25589665
36 G Kuchcinski, C Mellerio, J Pallud, E Dezamis, G Turc, O Rigaux-Viodé, C Malherbe, P Roca, X Leclerc, P Varlet, F Chrétien, B Devaux, JF Meder, C Oppenheim. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology 2015; 84(6): 560–568
https://doi.org/10.1212/WNL.0000000000001226 pmid: 25589667
37 JJ Pillai, D Zacá. Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas. World J Clin Oncol 2011; 2(12): 397–403
https://doi.org/10.5306/wjco.v2.i12.397 pmid: 22171282
38 BL Hou, M Bradbury, KK Peck, NM Petrovich, PH Gutin, AI Holodny. Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 2006; 32(2): 489–497
https://doi.org/10.1016/j.neuroimage.2006.04.188 pmid: 16806983
39 G Krüger, A Kastrup, GH Glover. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001; 45(4): 595–604
https://doi.org/10.1002/mrm.1081 pmid: 11283987
40 A Bizzi, V Blasi, A Falini, P Ferroli, M Cadioli, U Danesi, D Aquino, C Marras, D Caldiroli, G Broggi. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 2008; 248(2): 579–589
https://doi.org/10.1148/radiol.2482071214 pmid: 18539893
41 FE Roux, K Boulanouar, JA Lotterie, M Mejdoubi, JP LeSage, I Berry. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 2003; 52(6): 1335–1347
https://doi.org/10.1227/01.NEU.0000064803.05077.40 pmid: 12762879
42 J Ruohonen, J Karhu. Navigated transcranial magnetic stimulation. Neurophysiol Clin 2010; 40(1): 7–17
https://doi.org/10.1016/j.neucli.2010.01.006 pmid: 20230931
43 T Kombos, T Picht, A Derdilopoulos, O Suess. Impact of intraoperative neurophysiological monitoring on surgery of high-grade gliomas. J Clin Neurophysiol 2009; 26(6): 422–425
https://doi.org/10.1097/WNP.0b013e3181c2c0dc pmid: 19952567
44 A Pascual-Leone, V Walsh, J Rothwell. Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 2000; 10(2): 232–237
https://doi.org/10.1016/S0959-4388(00)00081-7 pmid: 10753803
45 A Pascual-Leone, JR Gates, A Dhuna. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 1991; 41(5): 697–702
https://doi.org/10.1212/WNL.41.5.697 pmid: 2027485
46 CM Epstein, JJ Lah, K Meador, JD Weissman, LE Gaitan, B Dihenia. Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 1996; 47(6): 1590–1593
https://doi.org/10.1212/WNL.47.6.1590 pmid: 8960755
47 P Lioumis, A Zhdanov, N Mäkelä, H Lehtinen, J Wilenius, T Neuvonen, H Hannula, V Deletis, T Picht, JP Mäkelä. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 2012; 204(2): 349–354
https://doi.org/10.1016/j.jneumeth.2011.11.003 pmid: 22108143
48 T Picht, SM Krieg, N Sollmann, J Rösler, B Niraula, T Neuvonen, P Savolainen, P Lioumis, JP Mäkelä, V Deletis, B Meyer, P Vajkoczy, F Ringel. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 2013; 72(5): 808–819
https://doi.org/10.1227/NEU.0b013e3182889e01 pmid: 23385773
49 S Ille, N Sollmann, T Hauck, S Maurer, N Tanigawa, T Obermueller, C Negwer, D Droese, C Zimmer, B Meyer, F Ringel, SM Krieg. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg 2015; 123(1): 212–225
https://doi.org/10.3171/2014.9.JNS14929 pmid: 25748306
50 PE Tarapore, AM Findlay, SM Honma, D Mizuiri, JF Houde, MS Berger, SS Nagarajan. Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage 2013; 82: 260–272
https://doi.org/10.1016/j.neuroimage.2013.05.018 pmid: 23702420
51 JP Lefaucheur. Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation (rTMS). Neurophysiol Clin 2006; 36(3): 105–115
https://doi.org/10.1016/j.neucli.2006.08.011 pmid: 17046605
52 N Kapur. Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain 1996; 119(5): 1775–1790
https://doi.org/10.1093/brain/119.5.1775 pmid: 8931597
53 MF Glasser, JK Rilling. DTI tractography of the human brain’s language pathways. Cereb Cortex 2008; 18(11): 2471–2482
https://doi.org/10.1093/cercor/bhn011 pmid: 18281301
54 D Saur, BW Kreher, S Schnell, D Kümmerer, P Kellmeyer, MS Vry, R Umarova, M Musso, V Glauche, S Abel, W Huber, M Rijntjes, J Hennig, C Weiller. Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 2008; 105(46): 18035–18040
https://doi.org/10.1073/pnas.0805234105 pmid: 19004769
55 S Wakana, A Caprihan, MM Panzenboeck, JH Fallon, M Perry, RL Gollub, K Hua, J Zhang, H Jiang, P Dubey, A Blitz, P van Zijl, S Mori. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007; 36(3): 630–644
https://doi.org/10.1016/j.neuroimage.2007.02.049 pmid: 17481925
56 M Catani, M Thiebaut de Schotten. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008; 44(8): 1105–1132
https://doi.org/10.1016/j.cortex.2008.05.004 pmid: 18619589
57 J Martino, PC De Witt Hamer, MS Berger, MT Lawton, CM Arnold, EM de Lucas, H Duffau. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 2013; 218(1): 105–121
https://doi.org/10.1007/s00429-012-0386-5 pmid: 22422148
58 JS Wu, LF Zhou, XN Hong, Y Mao, GH Du. Role of diffusion tensor imaging in neuronavigation surgery of brain tumors involving pyramidal tracts. Chin J Surg (Zhonghua Wai Ke Za Zhi) 2003; 41(9): 662–666(in Chinese)
pmid: 14680564
59 FP Zhu, JS Wu, CJ Yao, LQ Lang, G Xu, J Zhang, S Sun, Y Mao, LF Zhou. Diffusion tensor imaging correlates with subcortical stimulation for intraoperative pyramidal tract mapping: a preliminary study. Chin J Neurosurg (Zhonghua Shen Jing Wai Ke Za Zhi) 2010; 26(9): 795–799(in Chinese)
https://doi.org/10.3760/cma.j.issn.1001-2346.2010.09.009
60 FP Zhu, JS Wu, CJ Yao, LQ Lang, G Xu, Y Mao. Intraoperative neurophysiological monitoring in low-field MRI environment. Chin J Neurosurg (Zhonghua Shen Jing Wai Ke Za Zhi) 2010; 26(4): 303–305(in Chinese)
https://doi.org/10.3760/cma.j.issn.1001-2346.2010.04.007
61 Z Yuan. Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements. Biomed Opt Express 2013; 4(11): 2629–2643
https://doi.org/10.1364/BOE.4.002629 pmid: 24298421
62 E Watanabe, A Maki, F Kawaguchi, K Takashiro, Y Yamashita, H Koizumi, Y Mayanagi. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci Lett 1998; 256(1): 49–52
https://doi.org/10.1016/S0304-3940(98)00754-X pmid: 9832214
63 RP Kennan, D Kim, A Maki, H Koizumi, RT Constable. Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI. Hum Brain Mapp 2002; 16(3): 183–189
https://doi.org/10.1002/hbm.10039 pmid: 12112772
64 NF Watson, C Dodrill, D Farrell, MD Holmes, JW Miller. Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure. Seizure 2004; 13(6): 399–402
https://doi.org/10.1016/j.seizure.2003.09.008 pmid: 15276143
65 M Peña, A Maki, D Kovacić, G Dehaene-Lambertz, H Koizumi, F Bouquet, J Mehler. Sounds and silence: an optical topography study of language recognition at birth. Proc Natl Acad Sci USA 2003; 100(20): 11702–11705
https://doi.org/10.1073/pnas.1934290100 pmid: 14500906
66 K Kotilahti, I Nissilä, T Näsi, L Lipiäinen, T Noponen, P Meriläinen, M Huotilainen, V Fellman. Hemodynamic responses to speech and music in newborn infants. Hum Brain Mapp 2010; 31(4): 595–603
pmid: 19790172
67 T Qiu, NUF Hameed, Y Peng, S Wang, J Wu, L Zhou. Functional near-infrared spectroscopy for intraoperative brain mapping. Neurophotonics 2019; 6(4): 045010
https://doi.org/10.1117/1.NPh.6.4.045010 pmid: 31799334
68 CY Lee, YN Liu, JL Tsai. The time course of contextual effects on visual word recognition. Front Psychol 2012; 3: 285
https://doi.org/10.3389/fpsyg.2012.00285 pmid: 22934087
69 AM Beres. Time is of the essence: a review of electroencephalography (EEG) and event-related brain potentials (ERPs) in language research. Appl Psychophysiol Biofeedback 2017; 42(4): 247–255
https://doi.org/10.1007/s10484-017-9371-3 pmid: 28698970
70 MA Boudewyn, DL Long, TY Swaab. Graded expectations: predictive processing and the adjustment of expectations during spoken language comprehension. Cogn Affect Behav Neurosci 2015; 15(3): 607–624
https://doi.org/10.3758/s13415-015-0340-0 pmid: 25673006
71 MS Nieuwland. Do ‘early’ brain responses reveal word form prediction during language comprehension? A critical review. Neurosci Biobehav Rev 2019; 96: 367–400
https://doi.org/10.1016/j.neubiorev.2018.11.019 pmid: 30621862
72 P Hagoort, M Wassenaar, CM Brown. Syntax-related ERP-effects in Dutch. Brain Res Cogn Brain Res 2003; 16(1): 38–50
https://doi.org/10.1016/S0926-6410(02)00208-2 pmid: 12589887
73 H Brouwer, JC Hoeks. A time and place for language comprehension: mapping the N400 and the P600 to a minimal cortical network. Front Hum Neurosci 2013; 7: 758
https://doi.org/10.3389/fnhum.2013.00758 pmid: 24273505
74 LA Farwell, E Donchin. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988; 70(6): 510–523
https://doi.org/10.1016/0013-4694(88)90149-6 pmid: 2461285
75 DJ Krusienski, EW Sellers, DJ McFarland, TM Vaughan, JR Wolpaw. Toward enhanced P300 speller performance. J Neurosci Methods 2008; 167(1): 15–21
https://doi.org/10.1016/j.jneumeth.2007.07.017 pmid: 17822777
76 H Serby, E Yom-Tov, GF Inbar. An improved P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2005; 13(1): 89–98
https://doi.org/10.1109/TNSRE.2004.841878 pmid: 15813410
77 H Zhang, C Guan, C Wang. Asynchronous P300-based brain-computer interfaces: a computational approach with statistical models. IEEE Trans Biomed Eng 2008; 55(6): 1754–1763
https://doi.org/10.1109/TBME.2008.919128 pmid: 18714840
78 JJ See, TW Lew, TK Kwek, KJ Chin, MF Wong, QY Liew, SH Lim, HS Ho, Y Chan, GP Loke, VS Yeo. Anaesthetic management of awake craniotomy for tumour resection. Ann Acad Med Singap 2007; 36(5): 319–325
pmid: 17549277
79 F Piccioni, M Fanzio. Management of anesthesia in awake craniotomy. Minerva Anestesiol 2008; 74(7-8): 393–408
pmid: 18612268
80 F Bilotta, G Rosa. ‘Anesthesia’ for awake neurosurgery. Curr Opin Anaesthesiol 2009; 22(5): 560–565
https://doi.org/10.1097/ACO.0b013e3283302339 pmid: 19623055
81 E Hansen, M Seemann, N Zech, C Doenitz, R Luerding, A Brawanski. Awake craniotomies without any sedation: the awake-awake-awake technique. Acta Neurochir (Wien) 2013; 155(8): 1417–1424
https://doi.org/10.1007/s00701-013-1801-2 pmid: 23812965
82 OK Dilmen, EF Akcil, A Oguz, H Vehid, Y Tunali. Comparison of conscious sedation and asleep-awake-asleep techniques for awake craniotomy. J Clin Neurosci 2017; 35: 30–34
https://doi.org/10.1016/j.jocn.2016.10.007 pmid: 27771234
83 L Meng, DL McDonagh, MS Berger, AW Gelb. Anesthesia for awake craniotomy: a how-to guide for the occasional practitioner. Can J Anaesth 2017; 64(5): 517–529
https://doi.org/10.1007/s12630-017-0840-1 pmid: 28181184
84 L Jin, JS Wu, GB Chen, LF Zhou. Unforgettable ups and downs of acupuncture anesthesia in China. World Neurosurg 2017; 102: 623–631
https://doi.org/10.1016/j.wneu.2017.02.036 pmid: 28214637
85 Y Wang, MS Fifer, A Flinker, A Korzeniewska, MC Cervenka, WS Anderson, DF Boatman-Reich, NE Crone. Spatial-temporal functional mapping of language at the bedside with electrocorticography. Neurology 2016; 86(13): 1181–1189
https://doi.org/10.1212/WNL.0000000000002525 pmid: 26935890
86 R Arya, PS Horn, NE Crone. ECoG high-gamma modulation versus electrical stimulation for presurgical language mapping. Epilepsy Behav 2018; 79: 26–33
https://doi.org/10.1016/j.yebeh.2017.10.044 pmid: 29247963
87 KE Bouchard, N Mesgarani, K Johnson, EF Chang. Functional organization of human sensorimotor cortex for speech articulation. Nature 2013; 495(7441): 327–332
https://doi.org/10.1038/nature11911 pmid: 23426266
88 BK Dichter, JD Breshears, MK Leonard, EF Chang. The control of vocal pitch in human laryngeal motor cortex. Cell 2018; 174(1): 21–31.e29
https://doi.org/10.1016/j.cell.2018.05.016 pmid: 23426266
89 EF Chang, JW Rieger, K Johnson, MS Berger, NM Barbaro, RT Knight. Categorical speech representation in human superior temporal gyrus. Nat Neurosci 2010; 13(11): 1428–1432
https://doi.org/10.1038/nn.2641 pmid: 20890293
90 N Mesgarani, EF Chang. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 2012; 485(7397): 233–236
https://doi.org/10.1038/nature11020 pmid: 22522927
91 N Mesgarani, C Cheung, K Johnson, EF Chang. Phonetic feature encoding in human superior temporal gyrus. Science 2014; 343(6174): 1006–1010
https://doi.org/10.1126/science.1245994 pmid: 24482117
92 C Tang, LS Hamilton, EF Chang. Intonational speech prosody encoding in the human auditory cortex. Science 2017; 357(6353): 797–801
https://doi.org/10.1126/science.aam8577 pmid: 28839071
93 KLS Colin Phillips. Language and the Brain. McGraw-Hill Publishers, 2005
94 GK Anumanchipalli, J Chartier, EF Chang. Speech synthesis from neural decoding of spoken sentences. Nature 2019; 568(7753): 493–498
https://doi.org/10.1038/s41586-019-1119-1 pmid: 31019317
95 FS Collins. Reengineering translational science: the time is right. Sci Transl Med 2011; 3(90): 90cm17
https://doi.org/10.1126/scitranslmed.3002747 pmid: 21734173
96 W Chiong, MK Leonard, EF Chang. Neurosurgical patients as human research subjects: ethical considerations in intracranial electrophysiology research. Neurosurgery 2018; 83(1): 29–37
https://doi.org/10.1093/neuros/nyx361 pmid: 28973530
[1] FMD-20022-OF-WJS_suppl_1 Video  
[1] ZHU Wenyu, TAN Liping, CHEN Xiangfeng, HUANG Qiang, LAN Qing. High risk factors for pulmonary fungous infection in intensive care units of neurosurgery[J]. Front. Med., 2007, 1(3): 299-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed