Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (4) : 518-527    https://doi.org/10.1007/s11684-020-0775-8
GUIDELINE
Guidelines for navigation-assisted spine surgery
Wei Tian1,2(), Bo Liu1, Da He1,2, Yajun Liu1,2, Xiaoguang Han1,2, Jingwei Zhao1,2, Mingxing Fan1,2, International Society for Computer Assisted Orthopaedic Surgery
1. Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
2. Beijing Key Laboratory of Robotic Orthopaedics, Beijing 100035, China
 Download: PDF(268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spinal surgery is a technically demanding and challenging procedure because of the complicated anatomical structures of the spine and its proximity to several important tissues. Surgical landmarks and fluoroscopy have been used for pedicle screw insertion but are found to produce inaccuracies in placement. Improving the safety and accuracy of spinal surgery has increasingly become a clinical concern. Computer-assisted navigation is an extension and application of precision medicine in orthopaedic surgery and has significantly improved the accuracy of spinal surgery. However, no clinical guidelines have been published for this relatively new and fast-growing technique, thus potentially limiting its adoption. In accordance with the consensus of consultant specialists, literature reviews, and our local experience, these guidelines include the basic concepts of the navigation system, workflow of navigation-assisted spinal surgery, some common pitfalls, and recommended solutions. This work helps to standardize navigation-assisted spinal surgery, improve its clinical efficiency and precision, and shorten the clinical learning curve.

Keywords guidelines      spine surgery      computer-assisted navigation     
Corresponding Author(s): Wei Tian   
Just Accepted Date: 28 June 2020   Online First Date: 20 July 2020    Issue Date: 26 August 2020
 Cite this article:   
Wei Tian,Bo Liu,Da He, et al. Guidelines for navigation-assisted spine surgery[J]. Front. Med., 2020, 14(4): 518-527.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0775-8
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I4/518
Types of surgery Clinical accuracy (%)
Conventional surgery 49.7–1.7
2D fluoroscopy-based navigation 73.7–95.0
3D fluoroscopy-based navigation 81.9–100
Preoperative CT-based navigation 90.8–94.4
Tab.1  Clinical accuracy of conventional surgery and different types of navigated spinal surgeries
Fig.1  Position sketch for the positions of the participant and navigation equipment.
Fig.2  Representative flow diagram of computer-assisted navigated spine surgery.
1 LP Amiot, H Labelle, JA DeGuise, M Sati, P Brodeur, CH Rivard. Computer-assisted pedicle screw fixation. A feasibility study. Spine 1995; 20(10): 1208–1212
https://doi.org/10.1097/00007632-199505150-00019 pmid: 7638668
2 NF Tian, HZ Xu. Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop 2009; 33(4): 895–903
https://doi.org/10.1007/s00264-009-0792-3 pmid: 19421752
3 W Tian, Y Liu, S Zheng, Y Lv. Accuracy of lower cervical pedicle screw placement with assistance of distinct navigation systems: a human cadaveric study. Eur Spine J 2013; 22(1): 148–155
https://doi.org/10.1007/s00586-012-2494-6 pmid: 22987158
4 NF Tian, QS Huang, P Zhou, Y Zhou, RK Wu, Y Lou, HZ Xu. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 2011; 20(6): 846–859
https://doi.org/10.1007/s00586-010-1577-5 pmid: 20862593
5 BJ Shin, AR James, IU Njoku, R Härtl. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 2012; 17(2): 113–122
https://doi.org/10.3171/2012.5.SPINE11399 pmid: 22724594
6 ID Gelalis, NK Paschos, EE Pakos, AN Politis, CM Arnaoutoglou, AC Karageorgos, A Ploumis, TA Xenakis. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 2012; 21(2): 247–255
https://doi.org/10.1007/s00586-011-2011-3 pmid: 21901328
7 PA Helm, R Teichman, SL Hartmann, D Simon. Spinal navigation and imaging: history, trends, and future. IEEE Trans Med Imaging 2015; 34(8): 1738–1746
https://doi.org/10.1109/TMI.2015.2391200 pmid: 25594965
8 FT Gebhard, MD Kraus, E Schneider, UC Liener, L Kinzl, M Arand. Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 2006; 31(17): 2024–2027
https://doi.org/10.1097/01.brs.0000229250.69369.ac pmid: 16924222
9 MD Kraus, G Krischak, P Keppler, FT Gebhard, UH Schuetz. Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res 2010; 468(9): 2419–2429
https://doi.org/10.1007/s11999-010-1393-6 pmid: 20521129
10 JR Bandela, RP Jacob, M Arreola, TM Griglock, F Bova, M Yang. Use of CT-based intraoperative spinal navigation: management of radiation exposure to operator, staff, and patients. World Neurosurg 2013; 79(2): 390–394
https://doi.org/10.1016/j.wneu.2011.05.019 pmid: 22120382
11 HE Smith, MD Welsch, RC Sasso, AR Vaccaro. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 2008; 31(5): 532–537
https://doi.org/10.1080/10790268.2008.11753648 pmid: 19086710
12 CW Kim, YP Lee, W Taylor, A Oygar, WK Kim. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 2008; 8(4): 584–590
https://doi.org/10.1016/j.spinee.2006.12.012 pmid: 18586198
13 M Meyer, K Farah, T Graillon, H Dufour, B Blondel, S Fuentes. Minimal invasive percutaneous C1-C2 fixation using an intraoperative three-dimensional imaging-based navigation system on management of odontoid fractures. World Neurosurg 2020; 137: 266–271
https://doi.org/10.1016/j.wneu.2019.12.054 pmid: 31863892
14 J Villard, YM Ryang, AK Demetriades, A Reinke, M Behr, A Preuss, B Meyer, F Ringel. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine 2014; 39(13): 1004–1009
https://doi.org/10.1097/BRS.0000000000000351 pmid: 24732833
15 E Yu, SN Khan. Does less invasive spine surgery result in increased radiation exposure? A systematic review. Clin Orthop Relat Res 2014; 472(6): 1738–1748
https://doi.org/10.1007/s11999-014-3503-3 pmid: 24549771
16 JH Klingler, R Sircar, C Scheiwe, E Kogias, MT Krüger, C Scholz, U Hubbe. Comparative study of C-arms for intraoperative 3-dimensional imaging and navigation in minimally invasive spine surgery part II: radiation exposure. Clin Spine Surg 2017; 30(6): E669–E676
https://doi.org/10.1097/BSD.0000000000000187 pmid: 28632552
17 U Spetzger, A Von Schilling, G Winkler, J Wahrburg, A König. The past, present and future of minimally invasive spine surgery: a review and speculative outlook. Minim Invasive Ther Allied Technol 2013; 22(4): 227–241
https://doi.org/10.3109/13645706.2013.821414 pmid: 23964794
18 S Virk, S Qureshi. Navigation in minimally invasive spine surgery. J Spine Surg 2019; 5(Suppl 1): S25–S30
https://doi.org/10.21037/jss.2019.04.23 pmid: 31380490
19 Z Lang, W Tian, Y Liu, B Liu, Q Yuan, Y Sun. Minimally invasive pedicle screw fixation using intraoperative 3-dimensional fluoroscopy-based navigation (CAMISS Technique) for Hangman fracture. Spine 2016; 41(1): 39–45
https://doi.org/10.1097/BRS.0000000000001111 pmid: 26267827
20 W Tian, YF Xu, B Liu, YJ Liu, D He, Q Yuan, Z Lang, XG Han. Computer-assisted minimally invasive transforaminal lumbar interbody fusion may be better than open surgery for treating degenerative lumbar disease. Clin Spine Surg 2017; 30(6): 237–242
https://doi.org/10.1097/BSD.0000000000000165 pmid: 28632545
21 JN Sembrano, SC Yson, JJ Theismann. Computer navigation in minimally invasive spine surgery. Curr Rev Musculoskelet Med 2019; 12(4): 415–424
https://doi.org/10.1007/s12178-019-09577-z pmid: 31701412
22 W. Tian CAMISS—the trend of treatment spine injury. Chin J Orthop Trauma 2012; 14(3): 185–187
23 I Hussain, FA Schmidt, S Kirnaz, C Wipplinger, TH Schwartz, R Härtl. MIS approaches in the cervical spine. J Spine Surg 2019; 5(Suppl 1): S74–S83
https://doi.org/10.21037/jss.2019.04.21 pmid: 31380495
24 W Tian, Y Liu, M Fan, J Zhao, P Jin, C Zeng. CAMISS concept and its clinical application. Adv Exp Med Biol 2018; 1093: 31–46
https://doi.org/10.1007/978-981-13-1396-7_3 pmid: 30306470
25 J Fichtner, N Hofmann, A Rienmüller, N Buchmann, J Gempt, JS Kirschke, F Ringel, B Meyer, YM Ryang. Revision rate of misplaced pedicle screws of the thoracolumbar spine-comparison of three-dimensional fluoroscopy navigation with freehand placement: a systematic analysis and review of the literature. World Neurosurg 2018; 109: e24–e32
https://doi.org/10.1016/j.wneu.2017.09.091 pmid: 28951183
26 D Zou, K Zhang, Y Ren, Y Wu, Y Yang, Y Li. Three-dimensional image navigation system-assisted anterior cervical screw fixation for treatment of acute odontoid fracture. Int J Clin Exp Med 2014; 7(11): 4332–4336
pmid: 25550950
27 W Tian, C Weng, B Liu, Q Li, L Hu, ZY Li, YJ Liu, YZ Sun. Posterior fixation and fusion of unstable Hangman’s fracture by using intraoperative three-dimensional fluoroscopy-based navigation. Eur Spine J 2012; 21(5): 863–871
https://doi.org/10.1007/s00586-011-2085-y pmid: 22109567
28 A Arab, F Alkherayf, A Sachs, EK Wai. Use of 3D navigation in subaxial cervical spine lateral mass screw insertion. J Neurol Surg Rep 2018; 79(1): e1–e8
https://doi.org/10.1055/s-0038-1624574 pmid: 29473011
29 JS Hott, SM Papadopoulos, N Theodore, CA Dickman, VK Sonntag. Intraoperative Iso-C C-arm navigation in cervical spinal surgery: review of the first 52 cases. Spine 2004; 29(24): 2856–2860
https://doi.org/10.1097/01.brs.0000147742.20637.49 pmid: 15599290
30 HY Lee, SH Lee, HK Son, JH Na, JH Lee, OK Baek, CS Shim. Comparison of multilevel oblique corpectomy with and without image guided navigation for multi-segmental cervical spondylotic myelopathy. Comput Aided Surg 2011; 16(1): 32–37
https://doi.org/10.3109/10929088.2010.535317 pmid: 21142410
31 Q Yuan, S Zheng, W Tian. Computer-assisted minimally invasive spine surgery for resection of ossification of the ligamentum flavum in the thoracic spine. Chin Med J (Engl) 2014; 127(11): 2043–2047
pmid: 24890149
32 H Nakashima, K Sato, T Ando, H Inoh, H Nakamura. Comparison of the percutaneous screw placement precision of isocentric C-arm 3-dimensional fluoroscopy-navigated pedicle screw implantation and conventional fluoroscopy method with minimally invasive surgery. J Spinal Disord Tech 2009; 22(7): 468–472
https://doi.org/10.1097/BSD.0b013e31819877c8 pmid: 20075808
33 W Luo, F Zhang, T Liu, XL Du, AM Chen, F Li. Minimally invasive transforaminal lumbar interbody fusion aided with computer-assisted spinal navigation system combined with electromyography monitoring. Chin Med J (Engl) 2012; 125(22): 3947–3951
pmid: 23158122
34 KH Guppy, I Chakrabarti, A Banerjee. The use of intraoperative navigation for complex upper cervical spine surgery. Neurosurg Focus 2014; 36(3): E5
https://doi.org/10.3171/2014.1.FOCUS13514 pmid: 24580006
35 W Tian, XG Han, B Liu, YJ Liu, D He, Q Yuan, YF Xu. Posterior reduction and monosegmental fusion with intraoperative three-dimensional navigation system in the treatment of high-grade developmental spondylolisthesis. Chin Med J (Engl) 2015; 128(7): 865–870
https://doi.org/10.4103/0366-6999.154278 pmid: 25836604
36 E Ughwanogho, NM Patel, KD Baldwin, NR Sampson, JM Flynn. Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine 2012; 37(8): E473–E478
https://doi.org/10.1097/BRS.0b013e318238bbd9 pmid: 22020579
37 M Ruf, R Wagner, H Merk, J Harms. Preoperative planning and computer assisted surgery in ankylosing spondylitis. Z Orthop Ihre Grenzgeb 2006; 144(1): 52–57 (in German)
https://doi.org/10.1055/s-2006-921484 pmid: 16498561
38 IH Kalfas. Image-guided spinal navigation: application to spinal metastases. Neurosurg Focus 2001; 11(6): e5
https://doi.org/10.3171/foc.2001.11.6.6 pmid: 16463997
39 R Nasser, D Drazin, J Nakhla, L Al-Khouja, E Brien, EM Baron, TT Kim, J Patrick Johnson, R Yassari. Resection of spinal column tumors utilizing image-guided navigation: a multicenter analysis. Neurosurg Focus 2016; 41(2): E15
https://doi.org/10.3171/2016.5.FOCUS16136 pmid: 27476839
40 ZB Moses, RR Mayer, BA Strickland, RM Kretzer, JP Wolinsky, ZL Gokaslan, AA Baaj. Neuronavigation in minimally invasive spine surgery. Neurosurg Focus 2013; 35(2): E12
https://doi.org/10.3171/2013.5.FOCUS13150 pmid: 23905950
41 YM Ryang, J Villard, T Obermüller, B Friedrich, P Wolf, J Gempt, F Ringel, B Meyer. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine J 2015; 15(3): 467–476
https://doi.org/10.1016/j.spinee.2014.10.003 pmid: 25315133
42 MJ Wood, J McMillen. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring—a retrospective review of 627 screws in 150 patients. Int J Spine Surg 2014; 8: 27
https://doi.org/10.14444/1027 pmid: 25694919
43 YS Bai, Y Zhang, ZQ Chen, CF Wang, YC Zhao, ZC Shi, M Li, KP Liu. Learning curve of computer-assisted navigation system in spine surgery. Chin Med J (Engl) 2010; 123(21): 2989–2994
pmid: 21162943
44 J Zhao, Y Liu, M Fan, B Liu, D He, W Tian. Comparison of the clinical accuracy between point-to-point registration and auto-registration using an active infrared navigation system. Spine 2018; 43(22): E1329–E1333
https://doi.org/10.1097/BRS.0000000000002704 pmid: 29689003
45 A Peiro-Garcia, AR Teles, R Ojaghi, F Ferri-de-Barros. Pedicle screw instrumentation in scoliosis surgery: on site simulation data on accuracy and efficiency with different techniques. Spine 2020; 45(11): E670– E676
https://doi.org/10.1097/BRS.0000000000003358 pmid: 31809473
46 T Laine, T Lund, M Ylikoski, J Lohikoski, D Schlenzka. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 2000; 9(3): 235–240
https://doi.org/10.1007/s005860000146 pmid: 10905443
47 AS Vaishnav, R Merrill, H Sandhu, S McAnany, S Iyer, CH Gang, T Albert, Qureshi SA. A review of techniques, time-demand, radiation exposure and outcomes of skin-anchored intra-operative 3D navigation in minimally invasive lumbar spinal surgery. Spine 2020; 45(8): E465–E476
https://doi.org/10.1097/BRS.0000000000003310 pmid: 31703054
48 LT Holly, KT Foley. Intraoperative spinal navigation. Spine 2003; 28(15 Suppl): S54–S61
https://doi.org/10.1097/01.BRS.0000076899.78522.D9 pmid: 12897475
49 D Mendelsohn, J Strelzow, N Dea, NL Ford, J Batke, A Pennington, K Yang, T Ailon, M Boyd, M Dvorak, B Kwon, S Paquette, C Fisher, J Street. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J 2016; 16(3): 343–354
https://doi.org/10.1016/j.spinee.2015.11.020 pmid: 26686604
50 S Rajasekaran, S Vidyadhara, P Ramesh, AP Shetty. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine 2007; 32(2): E56–E64
https://doi.org/10.1097/01.brs.0000252094.64857.ab pmid: 17224800
51 R Härtl, KS Lam, J Wang, A Korge, F Kandziora, L Audigé. Worldwide survey on the use of navigation in spine surgery. World Neurosurg 2013; 79(1): 162–172
https://doi.org/10.1016/j.wneu.2012.03.011 pmid: 22469525
[1] Bowen Jiang, Tej D. Azad, Ethan Cottrill, Corinna C. Zygourakis, Alex M. Zhu, Neil Crawford, Nicholas Theodore. New spinal robotic technologies[J]. Front. Med., 2019, 13(6): 723-729.
[2] Yong G. Peng,Haibo Song,E. Wang,Weipeng Wang,Jin Liu. Essential training steps to achieving competency in the basic intraoperative transesophageal echocardiography examination for Chinese anesthesiologists[J]. Front. Med., 2015, 9(1): 123-128.
[3] Jonathan Skupsky,Ke-Qin Hu. Current hepatitis B treatment guidelines and future research directions[J]. Front. Med., 2014, 8(2): 145-157.
[4] Bao-Zhu Yuan,Junzhi Wang. The regulatory sciences for stem cell-based medicinal products[J]. Front. Med., 2014, 8(2): 190-200.
[5] Jin-Nong ZHANG MD, Bo PENG BA, Jamile WOODS MD, Wei PENG MD, PhD, . Review of recent guidelines for the management of severe sepsis and septic shock[J]. Front. Med., 2010, 4(1): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed