Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (3) : 333-346    https://doi.org/10.1007/s11684-020-0776-7
REVIEW
Innate immune responses in RNA viral infection
Qian Xu1,2, Yuting Tang1, Gang Huang1()
1. Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
2. Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(895 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

RNA viruses cause a multitude of human diseases, including several pandemic events in the past century. Upon viral invasion, the innate immune system responds rapidly and plays a key role in activating the adaptive immune system. In the innate immune system, the interactions between pathogen-associated molecular patterns and host pattern recognition receptors activate multiple signaling pathways in immune cells and induce the production of pro-inflammatory cytokines and interferons to elicit antiviral responses. Macrophages, dendritic cells, and natural killer cells are the principal innate immune components that exert antiviral activities. In this review, the current understanding of innate immunity contributing to the restriction of RNA viral infections was briefly summarized. Besides the main role of immune cells in combating viral infection, the intercellular transfer of pathogen and host-derived materials and their epigenetic and metabolic interactions associated with innate immunity was discussed. This knowledge provides an enhanced understanding of the innate immune response to RNA viral infections in general and aids in the preparation for the existing and next emerging viral infections.

Keywords innate immune      viral infection      intercellular signaling      metabolic changes      epigenetic changes     
Corresponding Author(s): Gang Huang   
Just Accepted Date: 27 October 2020   Online First Date: 02 December 2020    Issue Date: 18 June 2021
 Cite this article:   
Qian Xu,Yuting Tang,Gang Huang. Innate immune responses in RNA viral infection[J]. Front. Med., 2021, 15(3): 333-346.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0776-7
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I3/333
Fig.1  Schematic of RNA viral signaling pathway. Endosomes expose viral RNAs to TLR3, 7, and 8. The TLR signaling pathways consist of two major cascades, namely, MyD88 and TRIF, depending on TLR domain-containing adaptors. RIG-I and MDA5 could sense RNA in the cytoplasm and trigger the oligomerization of MAVS. These transduction cascades result in IRF3/7 and NF-kB activation, which induces IFN secretion. Types I and III IFNs are sensed by distinct membrane-bound receptor complexes and stimulate similar signaling pathways. IFNs could activate the transcription of ISGs through intracellular kinases JAK1 and TYK2 and induce signaling pathways through STAT1/STAT2/IRF9 binding to the IFN-stimulated response elements (ISREs) in target gene promoters. Subsequently, a large number of ISGs is activated.
PRRs   PAMPs Reference
TLRs (transmembrane) TLR1 Lipoproteins (bacteria) [42,43]
TLR2, TLR4 Structural proteins (capsid, envelope proteins) [4245]
TLR3 dsRNA [58]
TLR5 Flagellin (bacteria) [46]
TLR6 Lipoproteins (bacteria) [42]
TLR7 ssRNA [9]
TLR8 ssRNA [9]
TLR9 CpG motif (bacteria, virus) [10]
TLR10 Not determined
RLRs (cytoplasm) RIG-I RNA [17,18]
MDA5 RNA [17,18]
LGP2 RNA [20,21]
NLRs (cytoplasm) NLRP3 DNA, RNA, protein, [33]
NLRP1 ssRNA [47]
NLRP9b dsRNA [47]
CLRs (membrane bound) MMR Mannose, fucose [23]
Others STING DNA [39,40]
Tab.1  PRRs in innate immune cells and PAMPs
Fig.2  NK cell surface receptors. NK cell surface receptors are broadly classified into four types: cytokine receptors, antibody receptors, activating receptors, and inhibitory receptors. When viral infection occurs, NK cells could be activated by cytokines, such as type I IFNs or IL-18 secreted by accessory cells. They could also be activated by antibody-coated cells that crosslink immunoglobulin G receptor CD16. KIRs and CD94/NKG2A are the major inhibitory receptors on NK cells. In addition, NK cells have activating receptors (e.g., NKG2D and NKG2C) expressed on their membrane that could initiate rapid killing of target cells.
Fig.3  Intercellular transfer of virus-derived RNAs, microRNAs (miRNAs), and inflammasome complex leading to bystander activation of innate immunity. Virus-derived RNAs, including miRNAs, are produced in the infected cells and packaged into exosomes, which are released into the extracellular space. Then, the RNAs are internalized by the uninfected cells via endocytosis and activate TLRs and RIG-I to induce the production of type I IFN. Inflammasome activation could induce IL-1b and IL-18 production and pyroptosis, which is a type of cell death that causes inflammasome complex release and phagocytosis by neighboring cells to induce inflammasome activation.
1 P Poltronieri, B Sun, M Mallardo. RNA viruses: RNA roles in pathogenesis, coreplication and viral load. Curr Genomics 2015; 16(5): 327–335
https://doi.org/10.2174/1389202916666150707160613 pmid: 27047253
2 P Broz, DM Monack. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013; 13(8): 551–565
https://doi.org/10.1038/nri3479 pmid: 23846113
3 CE Samuel. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14(4): 778–809
https://doi.org/10.1128/CMR.14.4.778-809.2001 pmid: 11585785
4 S Jensen, AR Thomsen. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 2012; 86(6): 2900–2910
https://doi.org/10.1128/JVI.05738-11 pmid: 22258243
5 S Akira, K Takeda. Toll-like receptor signalling. Nat Rev Immunol 2004; 4(7): 499–511
https://doi.org/10.1038/nri1391 pmid: 15229469
6 O de Bouteiller, E Merck, UA Hasan, S Hubac, B Benguigui, G Trinchieri, EE Bates, C Caux. Recognition of double-stranded RNA by human Toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem 2005; 280(46): 38133–38145
https://doi.org/10.1074/jbc.M507163200 pmid: 16144834
7 SS Diebold, T Kaisho, H Hemmi, S Akira, C Reis e Sousa. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303(5663): 1529–1531
https://doi.org/10.1126/science.1093616 pmid: 14976261
8 F Heil, H Hemmi, H Hochrein, F Ampenberger, C Kirschning, S Akira, G Lipford, H Wagner, S Bauer. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 2004; 303(5663): 1526–1529
https://doi.org/10.1126/science.1093620 pmid: 14976262
9 O Takeuchi, S Akira. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805–820
https://doi.org/10.1016/j.cell.2010.01.022 pmid: 20303872
10 A Krug, AR French, W Barchet, JA Fischer, A Dzionek, JT Pingel, MM Orihuela, S Akira, WM Yokoyama, M Colonna. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 2004; 21(1): 107–119
https://doi.org/10.1016/j.immuni.2004.06.007 pmid: 15345224
11 JH Lai, MY Wang, CY Huang, CH Wu, LF Hung, CY Yang, PY Ke, SF Luo, SJ Liu, LJ Ho. Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep 2018; 19(8): 19
https://doi.org/10.15252/embr.201846182 pmid: 29880709
12 M Yoneyama, T Fujita. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 2009; 227(1): 54–65
https://doi.org/10.1111/j.1600-065X.2008.00727.x pmid: 19120475
13 K Takahasi, M Yoneyama, T Nishihori, R Hirai, H Kumeta, R Narita, M Gale Jr, F Inagaki, T Fujita. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 2008; 29(4): 428–440
https://doi.org/10.1016/j.molcel.2007.11.028 pmid: 18242112
14 JJ Chiang, KMJ Sparrer, M van Gent, C Lässig, T Huang, N Osterrieder, KP Hopfner, MU Gack. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol 2018; 19(1): 53–62
https://doi.org/10.1038/s41590-017-0005-y pmid: 29180807
15 M Jiang, S Zhang, Z Yang, H Lin, J Zhu, L Liu, W Wang, S Liu, W Liu, Y Ma, L Zhang, X. CaoSelf-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell 2018; 173: 906–919.e13 PMID: 29706547
https://doi.org/DOI: 10.1016/j.cell.2018.03.064
16 Y Zhao, X Ye, W Dunker, Y Song, J Karijolich. RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nat Commun 2018; 9(1): 4841
https://doi.org/10.1038/s41467-018-07314-7 pmid: 30451863
17 F Hou, L Sun, H Zheng, B Skaug, QX Jiang, ZJ Chen. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011; 146(3): 448–461
https://doi.org/10.1016/j.cell.2011.06.041 pmid: 21782231
18 KN Son, Z Liang, HL Lipton. Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses. J Virol 2015; 89(18): 9383–9392
https://doi.org/10.1128/JVI.01299-15 pmid: 26136565
19 RY Sanchez David, C Combredet, V Najburg, GA Millot, G Beauclair, B Schwikowski, T Léger, JM Camadro, Y Jacob, J Bellalou, N Jouvenet, F Tangy, AV Komarova. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses. Sci Signal 2019; 12(601): eaar3993
https://doi.org/10.1126/scisignal.aar3993 pmid: 31575732
20 A Komuro, CM Horvath. RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 2006; 80(24): 12332–12342
https://doi.org/10.1128/JVI.01325-06 pmid: 17020950
21 T Saito, R Hirai, YM Loo, D Owen, CL Johnson, SC Sinha, S Akira, T Fujita, M Gale Jr. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 2007; 104(2): 582–587
https://doi.org/10.1073/pnas.0606699104 pmid: 17190814
22 GD Brown, JA Willment, L Whitehead. C-type lectins in immunity and homeostasis. Nat Rev Immunol 2018; 18(6): 374–389
https://doi.org/10.1038/s41577-018-0004-8 pmid: 29581532
23 L East, CM Isacke. The mannose receptor family. Biochim Biophys Acta 2002; 1572(2-3): 364–386
https://doi.org/10.1016/S0304-4165(02)00319-7 pmid: 12223280
24 JL Miller, BJ de Wet, L Martinez-Pomares, CM Radcliffe, RA Dwek, PM Rudd, S Gordon. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 2008; 4(2): e17
https://doi.org/10.1371/journal.ppat.0040017 pmid: 18266465
25 C Gürtler, AG Bowie. Innate immune detection of microbial nucleic acids. Trends Microbiol 2013; 21(8): 413–420
https://doi.org/10.1016/j.tim.2013.04.004 pmid: 23726320
26 S Carpenter, EP Ricci, BC Mercier, MJ Moore, KA Fitzgerald. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14(6): 361–376
https://doi.org/10.1038/nri3682 pmid: 24854588
27 X Cao. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016; 16(1): 35–50
https://doi.org/10.1038/nri.2015.8 pmid: 26711677
28 AJ Tong, X Liu, BJ Thomas, MM Lissner, MR Baker, MD Senagolage, AL Allred, GD Barish, ST Smale. A stringent systems approach uncovers gene-specific mechanisms regulating inflammation. Cell 2016; 165(1): 165–179
https://doi.org/10.1016/j.cell.2016.01.020 pmid: 26924576
29 K Honda, T Taniguchi. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006; 6(9): 644–658
https://doi.org/10.1038/nri1900 pmid: 16932750
30 K Högner, T Wolff, S Pleschka, S Plog, AD Gruber, U Kalinke, HD Walmrath, J Bodner, S Gattenlöhner, P Lewe-Schlosser, M Matrosovich, W Seeger, J Lohmeyer, S Herold. Macrophage-expressed IFN-b contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 2013; 9(2): e1003188
https://doi.org/10.1371/journal.ppat.1003188 pmid: 23468627
31 C Kallfass, S Lienenklaus, S Weiss, P Staeheli. Visualizing the β interferon response in mice during infection with influenza A viruses expressing or lacking nonstructural protein 1. J Virol 2013; 87(12): 6925–6930
https://doi.org/10.1128/JVI.00283-13 pmid: 23576514
32 NA Jewell, N Vaghefi, SE Mertz, P Akter, RS Peebles Jr, LO Bakaletz, RK Durbin, E Flaño, JE Durbin. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J Virol 2007; 81(18): 9790–9800
https://doi.org/10.1128/JVI.00530-07 pmid: 17626092
33 J Pothlichet, I Meunier, BK Davis, JP Ting, E Skamene, V von Messling, SM Vidal. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog 2013; 9(4): e1003256
https://doi.org/10.1371/journal.ppat.1003256 pmid: 23592984
34 IC Allen, MA Scull, CB Moore, EK Holl, E McElvania-TeKippe, DJ Taxman, EH Guthrie, RJ Pickles, JP Ting. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009; 30(4): 556–565
https://doi.org/10.1016/j.immuni.2009.02.005 pmid: 19362020
35 SM Man, TD Kanneganti. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2016; 16(1): 7–21
https://doi.org/10.1038/nri.2015.7 pmid: 26655628
36 J von Moltke, JS Ayres, EM Kofoed, J Chavarría-Smith, RE Vance. Recognition of bacteria by inflammasomes. Annu Rev Immunol 2013; 31(1): 73–106
https://doi.org/10.1146/annurev-immunol-032712-095944 pmid: 23215645
37 CS Shi, NR Nabar, NN Huang, JH Kehrl. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5(1): 101
https://doi.org/10.1038/s41420-019-0181-7 pmid: 31231549
38 HH Wong, TS Fung, S Fang, M Huang, MT Le, DX Liu. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology 2018; 515: 165–175
https://doi.org/10.1016/j.virol.2017.12.028 pmid: 29294448
39 L Sun, J Wu, F Du, X Chen, ZJ Chen. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339(6121): 786–791
https://doi.org/10.1126/science.1232458 pmid: 23258413
40 J Wu, L Sun, X Chen, F Du, H Shi, C Chen, ZJ Chen. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339(6121): 826–830
https://doi.org/10.1126/science.1229963 pmid: 23258412
41 Y Zheng, Q Liu, Y Wu, L Ma, Z Zhang, T Liu, S Jin, Y She, YP Li, J Cui. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 2018; 37(18): e99347
https://doi.org/10.15252/embj.201899347 pmid: 30065070
42 K Farhat, S Riekenberg, H Heine, J Debarry, R Lang, J Mages, U Buwitt-Beckmann, K Röschmann, G Jung, KH Wiesmüller, AJ Ulmer. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 2008; 83(3): 692–701
https://doi.org/10.1189/jlb.0807586 pmid: 18056480
43 MS Jin, SE Kim, JY Heo, ME Lee, HM Kim, SG Paik, H Lee, JO Lee. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130(6): 1071–1082
https://doi.org/10.1016/j.cell.2007.09.008 pmid: 17889651
44 K Hoshino, O Takeuchi, T Kawai, H Sanjo, T Ogawa, Y Takeda, K Takeda, S Akira. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162(7): 3749–3752
pmid: 10201887
45 R Schwandner, R Dziarski, H Wesche, M Rothe, CJ Kirschning. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999; 274(25): 17406–17409
https://doi.org/10.1074/jbc.274.25.17406 pmid: 10364168
46 F Hayashi, KD Smith, A Ozinsky, TR Hawn, EC Yi, DR Goodlett, JK Eng, S Akira, DM Underhill, A Aderem. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410(6832): 1099–1103
https://doi.org/10.1038/35074106 pmid: 11323673
47 DE Place, TD Kanneganti. Recent advances in inflammasome biology. Curr Opin Immunol 2018; 50: 32–38
https://doi.org/10.1016/j.coi.2017.10.011 pmid: 29128729
48 FO Martinez, S Gordon. The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Rev Clin Immunol 2015; 11(1): 5–13
https://doi.org/10.1586/1744666X.2015.985658 pmid: 25434688
49 M de Las Casas-Engel, AL Corbí. Serotonin modulation of macrophage polarization: inflammation and beyond. Adv Exp Med Biol 2014; 824: 89–115
https://doi.org/10.1007/978-3-319-07320-0_9 pmid: 25038996
50 F Ginhoux, S Jung. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014; 14(6): 392–404
https://doi.org/10.1038/nri3671 pmid: 24854589
51 J Xue, SV Schmidt, J Sander, A Draffehn, W Krebs, I Quester, D De Nardo, TD Gohel, M Emde, L Schmidleithner, H Ganesan, A Nino-Castro, MR Mallmann, L Labzin, H Theis, M Kraut, M Beyer, E Latz, TC Freeman, T Ulas, JL Schultze. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014; 40(2): 274–288
https://doi.org/10.1016/j.immuni.2014.01.006 pmid: 24530056
52 PJ Murray, JE Allen, SK Biswas, EA Fisher, DW Gilroy, S Goerdt, S Gordon, JA Hamilton, LB Ivashkiv, T Lawrence, M Locati, A Mantovani, FO Martinez, JL Mege, DM Mosser, G Natoli, JP Saeij, JL Schultze, KA Shirey, A Sica, J Suttles, I Udalova, JA van Ginderachter, SN Vogel, TA Wynn. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41(1): 14–20
https://doi.org/10.1016/j.immuni.2014.06.008 pmid: 25035950
53 A Domínguez-Soto, M de las Casas-Engel, R Bragado, J Medina-Echeverz, L Aragoneses-Fenoll, E Martín-Gayo, N van Rooijen, P Berraondo, ML Toribio, MA Moro, I Cuartero, A Castrillo, D Sancho, C Sánchez-Torres, P Bruhns, S Sánchez-Ramón, AL Corbí. Intravenous immunoglobulin promotes antitumor responses by modulating macrophage polarization. J Immunol 2014; 193(10): 5181–5189
https://doi.org/10.4049/jimmunol.1303375 pmid: 25326025
54 FO Martinez, S Gordon. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13
https://doi.org/10.12703/P6-13 pmid: 24669294
55 HH Gad, C Dellgren, OJ Hamming, S Vends, SR Paludan, R Hartmann. Interferon-λ is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem 2009; 284(31): 20869–20875
https://doi.org/10.1074/jbc.M109.002923 pmid: 19457860
56 Y Sang, W Brichalli, RR Rowland, F Blecha. Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses. PLoS One 2014; 9(2): e87613
https://doi.org/10.1371/journal.pone.0087613 pmid: 24505295
57 C Schindler, DE Levy, T Decker. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007; 282(28): 20059–20063
https://doi.org/10.1074/jbc.R700016200 pmid: 17502367
58 F McNab, K Mayer-Barber, A Sher, A Wack, A O’Garra. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15(2): 87–103 doi:10.1038/nri3787
pmid: 25614319
59 S Koch, S Finotto. Role of interferon-l in allergic asthma. J Innate Immun 2015; 7(3): 224–230
https://doi.org/10.1159/000369459 pmid: 25592858
60 LB Ivashkiv, LT Donlin. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14(1): 36–49
https://doi.org/10.1038/nri3581 pmid: 24362405
61 X Zhao, J Dai, X Xiao, L Wu, J Zeng, J Sheng, J Su, X Chen, G Wang, K Li. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS One 2014; 9(8): e104506
https://doi.org/10.1371/journal.pone.0104506 pmid: 25105760
62 Y Yang, R Zhang, F Xia, T Zou, A Huang, S Xiong, J Zhang. LPS converts Gr-1+CD115+ myeloid-derived suppressor cells from M2 to M1 via P38 MAPK. Exp Cell Res 2013; 319(12): 1774–1783
https://doi.org/10.1016/j.yexcr.2013.05.007 pmid: 23701951
63 JM González-Navajas, J Lee, M David, E Raz. Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12(2): 125–135
https://doi.org/10.1038/nri3133 pmid: 22222875
64 M Jaume, MS Yip, CY Cheung, HL Leung, PH Li, F Kien, I Dutry, B Callendret, N Escriou, R Altmeyer, B Nal, M Daëron, R Bruzzone, JS Peiris. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcgR pathway. J Virol 2011; 85(20): 10582–10597
https://doi.org/10.1128/JVI.00671-11 pmid: 21775467
65 MS Yip, NH Leung, CY Cheung, PH Li, HH Lee, M Daëron, JS Peiris, R Bruzzone, M Jaume. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J 2014; 11(1): 82
https://doi.org/10.1186/1743-422X-11-82 pmid: 24885320
66 J Zhao, J Zhao, N Van Rooijen, S Perlman. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLoS Pathog 2009; 5(10): e1000636
https://doi.org/10.1371/journal.ppat.1000636 pmid: 19851468
67 Y Tatano, T Shimizu, H Tomioka. Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Sci Rep 2014; 4(1): 4146
https://doi.org/10.1038/srep04146 pmid: 24553452
68 I Darwish, S Mubareka, WC Liles. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther 2011; 9(7): 807–822
https://doi.org/10.1586/eri.11.56 pmid: 21810053
69 RM Boehler, R Kuo, S Shin, AG Goodman, MA Pilecki, RM Gower, JN Leonard, LD Shea. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype. Biotechnol Bioeng 2014; 111(6): 1210–1221
https://doi.org/10.1002/bit.25175 pmid: 24375008
70 K Richter, G Perriard, R Behrendt, RA Schwendener, V Sexl, R Dunn, M Kamanaka, RA Flavell, A Roers, A Oxenius. Macrophage and T cell produced IL-10 promotes viral chronicity. PLoS Pathog 2013; 9(11): e1003735
https://doi.org/10.1371/journal.ppat.1003735 pmid: 24244162
71 MT Zdrenghea, H Makrinioti, A Muresan, SL Johnston, LA Stanciu. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma. Rev Med Virol 2015; 25(1): 33–49
https://doi.org/10.1002/rmv.1817 pmid: 25430775
72 P Ouyang, K Rakus, SJ van Beurden, AH Westphal, AJ Davison, D Gatherer, AF Vanderplasschen. IL-10 encoded by viruses: a remarkable example of independent acquisition of a cellular gene by viruses and its subsequent evolution in the viral genome. J Gen Virol 2014; 95(Pt 2): 245–262
https://doi.org/10.1099/vir.0.058966-0 pmid: 24225498
73 EB Wilson, DG Brooks. The role of IL-10 in regulating immunity to persistent viral infections. Curr Top Microbiol Immunol 2011; 350: 39–65
https://doi.org/10.1007/82_2010_96 pmid: 20703965
74 DJ Perkins, SK Polumuri, ME Pennini, W Lai, P Xie, SN Vogel. Reprogramming of murine macrophages through TLR2 confers viral resistance via TRAF3-mediated, enhanced interferon production. PLoS Pathog 2013; 9(7): e1003479
https://doi.org/10.1371/journal.ppat.1003479 pmid: 23853595
75 MC Patel, KA Shirey, LM Pletneva, MS Boukhvalova, A Garzino-Demo, SN Vogel, JC Blanco. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014; 9(9): 811–829
https://doi.org/10.2217/fvl.14.70 pmid: 25620999
76 B Zhang, B Chassaing, Z Shi, R Uchiyama, Z Zhang, TL Denning, SE Crawford, AJ Pruijssers, JA Iskarpatyoti, MK Estes, TS Dermody, W Ouyang, IR Williams, M Vijay-Kumar, AT Gewirtz. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 2014; 346(6211): 861–865
https://doi.org/10.1126/science.1256999 pmid: 25395539
77 K Liu, MC Nussenzweig. Origin and development of dendritic cells. Immunol Rev 2010; 234(1): 45–54
https://doi.org/10.1111/j.0105-2896.2009.00879.x pmid: 20193011
78 B Pulendran, K Palucka, J Banchereau. Sensing pathogens and tuning immune responses. Science 2001; 293(5528): 253–256
https://doi.org/10.1126/science.1062060 pmid: 11452116
79 M Collin, N McGovern, M Haniffa. Human dendritic cell subsets. Immunology 2013; 140(1): 22–30
https://doi.org/10.1111/imm.12117 pmid: 23621371
80 L Ziegler-Heitbrock, P Ancuta, S Crowe, M Dalod, V Grau, DN Hart, PJ Leenen, YJ Liu, G MacPherson, GJ Randolph, J Scherberich, J Schmitz, K Shortman, S Sozzani, H Strobl, M Zembala, JM Austyn, MB Lutz. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116(16): e74–e80
https://doi.org/10.1182/blood-2010-02-258558 pmid: 20628149
81 A Moretta. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2002; 2(12): 957–964
https://doi.org/10.1038/nri956 pmid: 12461568
82 M Swiecki, M Colonna. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15(8): 471–485
https://doi.org/10.1038/nri3865 pmid: 26160613
83 B Webster, S Assil, M Dreux. Cell-cell sensing of viral infection by plasmacytoid dendritic cells. J Virol 2016; 90(22): 10050–10053
https://doi.org/10.1128/JVI.01692-16 pmid: 27605675
84 O Dessouki, Y Kamiya, H Nagahama, M Tanaka, S Suzu, Y Sasaki, S Okada. Chronic hepatitis C viral infection reduces NK cell frequency and suppresses cytokine secretion: reversion by anti-viral treatment. Biochem Biophys Res Commun 2010; 393(2): 331–337
https://doi.org/10.1016/j.bbrc.2010.02.008 pmid: 20138830
85 M Jinushi, T Takehara, T Tatsumi, T Kanto, V Groh, T Spies, T Suzuki, T Miyagi, N Hayashi. Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J Immunol 2003; 171(10): 5423–5429
https://doi.org/10.4049/jimmunol.171.10.5423 pmid: 14607946
86 R Kiessling, E Klein, H Wigzell. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5(2): 112–117
https://doi.org/10.1002/eji.1830050208 pmid: 1234049
87 Q Hammer, T Rückert, C Romagnani. Natural killer cell specificity for viral infections. Nat Immunol 2018; 19(8): 800–808 doi:10.1038/s41590-018-0163-6
pmid: 30026479
88 LM Kronstad, C Seiler, R Vergara, SP Holmes, CA Blish. Differential induction of IFN-a and modulation of CD112 and CD54 expression govern the magnitude of NK cell IFN-g response to influenza A viruses. J Immunol 2018; 201(7): 2117–2131
https://doi.org/10.4049/jimmunol.1800161 pmid: 30143589
89 A Martín-Fontecha, LL Thomsen, S Brett, C Gerard, M Lipp, A Lanzavecchia, F Sallusto. Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat Immunol 2004; 5(12): 1260–1265
https://doi.org/10.1038/ni1138 pmid: 15531883
90 HR Wagstaffe, CM Nielsen, EM Riley, MR Goodier. IL-15 promotes polyfunctional NK cell responses to influenza by boosting IL-12 production. J Immunol 2018; 200(8): 2738–2747
https://doi.org/10.4049/jimmunol.1701614 pmid: 29491009
91 AE Zamora, EG Aguilar, CM Sungur, LT Khuat, C Dunai, GR Lochhead, J Du, C Pomeroy, BR Blazar, DL Longo, JM Venstrom, N Baumgarth, WJ Murphy. Licensing delineates helper and effector NK cell subsets during viral infection. JCI Insight 2017; 2(10): e87032
https://doi.org/10.1172/jci.insight.87032 pmid: 28515356
92 E Vivier, E Tomasello, M Baratin, T Walzer, S Ugolini. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503–510
https://doi.org/10.1038/ni1582 pmid: 18425107
93 LL Liu, J Landskron, EH Ask, M Enqvist, E Sohlberg, JA Traherne, Q Hammer, JP Goodridge, S Larsson, J Jayaraman, VYS Oei, M Schaffer, K Taskén, HG Ljunggren, C Romagnani, J Trowsdale, KJ Malmberg, V Béziat. Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Reports 2016; 15(5): 1088–1099
https://doi.org/10.1016/j.celrep.2016.04.005 pmid: 27117418
94 M Luetke-Eversloh, Q Hammer, P Durek, K Nordström, G Gasparoni, M Pink, A Hamann, J Walter, HD Chang, J Dong, C Romagnani. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 2014; 10(10): e1004441
https://doi.org/10.1371/journal.ppat.1004441 pmid: 25329659
95 KB Nguyen, TP Salazar-Mather, MY Dalod, JB Van Deusen, XQ Wei, FY Liew, MA Caligiuri, JE Durbin, CA Biron. Coordinated and distinct roles for IFN-αβ, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 2002; 169(8): 4279–4287
https://doi.org/10.4049/jimmunol.169.8.4279 pmid: 12370359
96 S Madera, M Rapp, MA Firth, JN Beilke, LL Lanier, JC Sun. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J Exp Med 2016; 213(2): 225–233
https://doi.org/10.1084/jem.20150712 pmid: 26755706
97 DM Strauss-Albee, J Fukuyama, EC Liang, Y Yao, JA Jarrell, AL Drake, J Kinuthia, RR Montgomery, G John-Stewart, S Holmes, CA Blish. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 2015; 7(297): 297ra115
https://doi.org/10.1126/scitranslmed.aac5722 pmid: 26203083
98 K Kärre. Natural killer cell recognition of missing self. Nat Immunol 2008; 9(5): 477–480
https://doi.org/10.1038/ni0508-477 pmid: 18425103
99 J Glienke, Y Sobanov, C Brostjan, C Steffens, C Nguyen, H Lehrach, E Hofer, F Francis. The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics 1998; 48(3): 163–173
https://doi.org/10.1007/s002510050420 pmid: 9683661
100 E Hatjiharissi, L Xu, DD Santos, ZR Hunter, BT Ciccarelli, S Verselis, M Modica, Y Cao, RJ Manning, X Leleu, EA Dimmock, A Kortsaris, C Mitsiades, KC Anderson, EA Fox, SP Treon. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood 2007; 110(7): 2561–2564
https://doi.org/10.1182/blood-2007-01-070656 pmid: 17475906
101 S Sivori, S Parolini, E Marcenaro, R Millo, C Bottino, A Moretta. Triggering receptors involved in natural killer cell-mediated cytotoxicity against choriocarcinoma cell lines. Hum Immunol 2000; 61(11): 1055–1058
https://doi.org/10.1016/S0198-8859(00)00201-9 pmid: 11137207
102 HT Hsu, EM Mace, AF Carisey, DI Viswanath, AE Christakou, M Wiklund, B Önfelt, JS Orange. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing. J Cell Biol 2016; 215(6): 875–889
https://doi.org/10.1083/jcb.201604136 pmid: 27903610
103 EM Mace, JS Orange. Genetic causes of human NK cell deficiency and their effect on NK cell subsets. Front Immunol 2016; 7: 545
https://doi.org/10.3389/fimmu.2016.00545 pmid: 27994588
104 E Wong, RH Xu, D Rubio, A Lev, C Stotesbury, M Fang, LJ Sigal. Migratory dendritic cells, group 1 innate lymphoid cells, and inflammatory monocytes collaborate to recruit NK cells to the virus-infected lymph node. Cell Reports 2018; 24(1): 142–154
https://doi.org/10.1016/j.celrep.2018.06.004 pmid: 29972776
105 LL Lanier. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 2008; 8(4): 259–268
https://doi.org/10.1038/nri2276 pmid: 18340344
106 DH Raulet, S Gasser, BG Gowen, W Deng, H Jung. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 2013; 31(1): 413–441
https://doi.org/10.1146/annurev-immunol-032712-095951 pmid: 23298206
107 S McQuaid, S Loughran, P Power, P Maguire, D Walls, MG Cusi, C Orvell, P Johnson. Haemagglutinin-neuraminidase from HPIV3 mediates human NK regulation of T cell proliferation via NKp44 and NKp46. J Gen Virol 2018; 99(6): 763–767
https://doi.org/10.1099/jgv.0.001070 pmid: 29683419
108 M Mendelson, Y Tekoah, A Zilka, O Gershoni-Yahalom, R Gazit, H Achdout, NV Bovin, T Meningher, M Mandelboim, O Mandelboim, A David, A Porgador. NKp46 O-glycan sequences that are involved in the interaction with hemagglutinin type 1 of influenza virus. J Virol 2010; 84(8): 3789–3797
https://doi.org/10.1128/JVI.01815-09 pmid: 20147410
109 M Diab, A Glasner, B Isaacson, Y Bar-On, Y Drori, R Yamin, A Duev-Cohen, O Danziger, R Zamostiano, M Mandelboim, S Jonjic, E Bacharach, O Mandelboim. NK-cell receptors NKp46 and NCR1 control human metapneumovirus infection. Eur J Immunol 2017; 47(4): 692–703
https://doi.org/10.1002/eji.201646756 pmid: 28191644
110 Y Bar-On, Y Charpak-Amikam, A Glasner, B Isaacson, A Duev-Cohen, P Tsukerman, A Varvak, M Mandelboim, O Mandelboim. NKp46 recognizes the sigma1 protein of reovirus: implications for reovirus-based cancer therapy. J Virol 2017; 91(19): e01045-17
https://doi.org/10.1128/JVI.01045-17 pmid: 28724773
111 G Ahlenstiel, RH Titerence, C Koh, B Edlich, JJ Feld, Y Rotman, MG Ghany, JH Hoofnagle, TJ Liang, T Heller, B Rehermann. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-α-dependent manner. Gastroenterology 2010; 138: 325–335.e1–2 PMID: 19747917
https://doi.org/DOI: 10.1053/j.gastro.2009.08.066
112 V Béziat, O Dalgard, T Asselah, P Halfon, P Bedossa, A Boudifa, B Hervier, I Theodorou, M Martinot, P Debré, NK Björkström, KJ Malmberg, P Marcellin, V Vieillard. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol 2012; 42(2): 447–457
https://doi.org/10.1002/eji.201141826 pmid: 22105371
113 DFG Malone, S Lunemann, J Hengst, HG Ljunggren, MP Manns, JK Sandberg, M Cornberg, H Wedemeyer, NK Björkström. Cytomegalovirus-driven adaptive-like natural killer cell expansions are unaffected by concurrent chronic hepatitis virus infections. Front Immunol 2017; 8: 525
https://doi.org/10.3389/fimmu.2017.00525 pmid: 28533779
114 C Petitdemange, N Wauquier, H Devilliers, H Yssel, I Mombo, M Caron, D Nkoghé, P Debré, E Leroy, V Vieillard. Longitudinal analysis of natural killer cells in dengue virus-infected patients in comparison to Chikungunya and Chikungunya/Dengue virus-infected patients. PLoS Negl Trop Dis 2016; 10(3): e0004499
https://doi.org/10.1371/journal.pntd.0004499 pmid: 26938618
115 M Mittelbrunn, C Gutiérrez-Vázquez, C Villarroya-Beltri, S González, F Sánchez-Cabo, MA González, A Bernad, F Sánchez-Madrid. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2(1): 282
https://doi.org/10.1038/ncomms1285 pmid: 21505438
116 JS Schorey, CV Harding. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 2016; 126(4): 1181–1189
https://doi.org/10.1172/JCI81132 pmid: 27035809
117 K Tamai, N Tanaka, T Nakano, E Kakazu, Y Kondo, J Inoue, M Shiina, K Fukushima, T Hoshino, K Sano, Y Ueno, T Shimosegawa, K Sugamura. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun 2010; 399(3): 384–390
https://doi.org/10.1016/j.bbrc.2010.07.083 pmid: 20673754
118 M Kalamvoki, T Deschamps. Extracellular vesicles during herpes simplex virus type 1 infection: an inquire. Virol J 2016; 13(1): 63
https://doi.org/10.1186/s12985-016-0518-2 pmid: 27048572
119 MZ Ratajczak, J Ratajczak. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med 2016; 5(1): 7
https://doi.org/10.1186/s40169-016-0087-4 pmid: 26943717
120 A Schwab, SS Meyering, B Lepene, S Iordanskiy, ML van Hoek, RM Hakami, F Kashanchi. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 2015; 6: 1132
https://doi.org/10.3389/fmicb.2015.01132 pmid: 26539170
121 K Takahashi, S Asabe, S Wieland, U Garaigorta, P Gastaminza, M Isogawa, FV Chisari. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci USA 2010; 107(16): 7431–7436
https://doi.org/10.1073/pnas.1002301107 pmid: 20231459
122 M Dreux, U Garaigorta, B Boyd, E Décembre, J Chung, C Whitten-Bauer, S Wieland, FV Chisari. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 2012; 12(4): 558–570
https://doi.org/10.1016/j.chom.2012.08.010 pmid: 23084922
123 X Liu, Z Zhang, J Ruan, Y Pan, VG Magupalli, H Wu, J Lieberman. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016; 535(7610): 153–158
https://doi.org/10.1038/nature18629 pmid: 27383986
124 A Lu, VG Magupalli, J Ruan, Q Yin, MK Atianand, MR Vos, GF Schröder, KA Fitzgerald, H Wu, EH Egelman. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156(6): 1193–1206
https://doi.org/10.1016/j.cell.2014.02.008 pmid: 24630722
125 B Balci-Peynircioglu, AL Waite, P Schaner, ZE Taskiran, N Richards, D Orhan, S Gucer, S Ozen, D Gumucio, E Yilmaz. Expression of ASC in renal tissues of familial mediterranean fever patients with amyloidosis: postulating a role for ASC in AA type amyloid deposition. Exp Biol Med (Maywood) 2008; 233(11): 1324–1333
https://doi.org/10.3181/0803-RM-106 pmid: 18791131
126 A Baroja-Mazo, F Martín-Sánchez, AI Gomez, CM Martínez, J Amores-Iniesta, V Compan, M Barberà-Cremades, J Yagüe, E Ruiz-Ortiz, J Antón, S Buján, I Couillin, D Brough, JI Arostegui, P Pelegrín. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 2014; 15(8): 738–748
https://doi.org/10.1038/ni.2919 pmid: 24952504
127 BS Franklin, L Bossaller, D De Nardo, JM Ratter, A Stutz, G Engels, C Brenker, M Nordhoff, SR Mirandola, A Al-Amoudi, MS Mangan, S Zimmer, BG Monks, M Fricke, RE Schmidt, T Espevik, B Jones, AG Jarnicki, PM Hansbro, P Busto, A Marshak-Rothstein, S Hornemann, A Aguzzi, W Kastenmüller, E Latz. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 2014; 15(8): 727–737
https://doi.org/10.1038/ni.2913 pmid: 24952505
128 HS Chahar, X Bao, A Casola. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 2015; 7(6): 3204–3225
https://doi.org/10.3390/v7062770 pmid: 26102580
129 G Birungi, SM Chen, BP Loy, ML Ng, SF Li. Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line. J Proteome Res 2010; 9(12): 6523–6534
https://doi.org/10.1021/pr100727m pmid: 20954703
130 T Delgado, EL Sanchez, R Camarda, M Lagunoff. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog 2012; 8(8): e1002866
https://doi.org/10.1371/journal.ppat.1002866 pmid: 22916018
131 DL Diamond, AJ Syder, JM Jacobs, CM Sorensen, KA Walters, SC Proll, JE McDermott, MA Gritsenko, Q Zhang, R Zhao, TO Metz, DG Camp 2nd, KM Waters, RD Smith, CM Rice, MG Katze. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 2010; 6(1): e1000719
https://doi.org/10.1371/journal.ppat.1000719 pmid: 20062526
132 KA Fontaine, R Camarda, M Lagunoff. Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 2014; 88(8): 4366–4374
https://doi.org/10.1128/JVI.03134-13 pmid: 24501408
133 KA Fontaine, EL Sanchez, R Camarda, M Lagunoff. Dengue virus induces and requires glycolysis for optimal replication. J Virol 2015; 89(4): 2358–2366
https://doi.org/10.1128/JVI.02309-14 pmid: 25505078
134 C Ramière, J Rodriguez, LS Enache, V Lotteau, P André, O Diaz. Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. J Virol 2014; 88(6): 3246–3254
https://doi.org/10.1128/JVI.02862-13 pmid: 24390321
135 S Bandiera, S Pernot, H El Saghire, SC Durand, C Thumann, E Crouchet, T Ye, I Fofana, MA Oudot, J Barths, C Schuster, P Pessaux, MH Heim, TF Baumert, MB Zeisel. Hepatitis C virus-induced upregulation of microRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. J Virol 2016; 90(14): 6387–6400
https://doi.org/10.1128/JVI.00619-16 pmid: 27147737
136 D Ramani, JP De Bandt, L Cynober. Aliphatic polyamines in physiology and diseases. Clin Nutr 2014; 33(1): 14–22
https://doi.org/10.1016/j.clnu.2013.09.019 pmid: 24144912
137 N Minois, D Carmona-Gutierrez, F Madeo. Polyamines in aging and disease. Aging (Albany NY) 2011; 3(8): 716–732
https://doi.org/10.18632/aging.100361 pmid: 21869457
138 BC Mounce, EZ Poirier, G Passoni, E Simon-Loriere, T Cesaro, M Prot, KA Stapleford, G Moratorio, A Sakuntabhai, JP Levraud, M Vignuzzi. Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict Zika and Chikungunya viruses. Cell Host Microbe 2016; 20(2): 167–177
https://doi.org/10.1016/j.chom.2016.06.011 pmid: 27427208
139 CS Reiss, T Komatsu. Does nitric oxide play a critical role in viral infections? J Virol 1998; 72(6): 4547–4551
https://doi.org/10.1128/JVI.72.6.4547-4551.1998 pmid: 9573217
140 EU Uehara, BS Shida, CA de Brito. Role of nitric oxide in immune responses against viruses: beyond microbicidal activity. Inflamm Res 2015; 64(11): 845–852
https://doi.org/10.1007/s00011-015-0857-2 pmid: 26208702
141 M Colasanti, T Persichini, G Venturini, P Ascenzi. S-nitrosylation of viral proteins: molecular bases for antiviral effect of nitric oxide. IUBMB Life 1999; 48(1): 25–31
https://doi.org/10.1080/713803459 pmid: 10791912
142 M Saura, C Zaragoza, A McMillan, RA Quick, C Hohenadl, JM Lowenstein, CJ Lowenstein. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 1999; 10(1): 21–28
https://doi.org/10.1016/S1074-7613(00)80003-5 pmid: 10023767
143 J Hu, MI Mahmoud, EE el-Fakahany. Polyamines inhibit nitric oxide synthase in rat cerebellum. Neurosci Lett 1994; 175(1-2): 41–45
https://doi.org/10.1016/0304-3940(94)91073-1 pmid: 7526294
144 A Dorhoi, V Yeremeev, G Nouailles, J Weiner 3rd, S Jörg, E Heinemann, D Oberbeck-Müller, JK Knaul, A Vogelzang, ST Reece, K Hahnke, HJ Mollenkopf, V Brinkmann, SH Kaufmann. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur J Immunol 2014; 44(8): 2380–2393
https://doi.org/10.1002/eji.201344219 pmid: 24782112
145 Y Watanabe, O Suzuki, T Haruyama, T Akaike. Interferon-γ induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem 2003; 89(2): 244–253
https://doi.org/10.1002/jcb.10501 pmid: 12704788
146 HY Yim, Y Yang, JS Lim, MS Lee, DE Zhang, KI Kim. The mitochondrial pathway and reactive oxygen species are critical contributors to interferon-a/b-mediated apoptosis in Ubp43-deficient hematopoietic cells. Biochem Biophys Res Commun 2012; 423(2): 436–440
https://doi.org/10.1016/j.bbrc.2012.05.154 pmid: 22683641
147 KS Burrack, TE Morrison. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol 2014; 5: 428
https://doi.org/10.3389/fimmu.2014.00428 pmid: 25250029
148 K Paschos, MJ Allday. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010; 18(10): 439–447
https://doi.org/10.1016/j.tim.2010.07.003 pmid: 20724161
149 C Ptaschinski, S Mukherjee, ML Moore, M Albert, K Helin, SL Kunkel, NW Lukacs. RSV-induced H3K4 demethylase KDM5B leads to regulation of dendritic cell-derived innate cytokines and exacerbates pathogenesis in vivo. PLoS Pathog 2015; 11(6): e1004978
https://doi.org/10.1371/journal.ppat.1004978 pmid: 26083387
150 NS Gokhale, SM Horner. RNA modifications go viral. PLoS Pathog 2017; 13(3): e1006188
https://doi.org/10.1371/journal.ppat.1006188 pmid: 28278189
151 C Schliehe, EK Flynn, B Vilagos, U Richson, S Swaminanthan, B Bosnjak, L Bauer, RK Kandasamy, IM Griesshammer, L Kosack, F Schmitz, V Litvak, J Sissons, A Lercher, A Bhattacharya, K Khamina, AL Trivett, L Tessarollo, I Mesteri, A Hladik, D Merkler, S Kubicek, S Knapp, MM Epstein, DE Symer, A Aderem, A Bergthaler. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol 2015; 16(1): 67–74
https://doi.org/10.1038/ni.3046 pmid: 25419628
152 J Yang, B Tian, H Sun, RP Garofalo, AR Brasier. Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition. Nat Microbiol 2017; 2(8): 17086
https://doi.org/10.1038/nmicrobiol.2017.86 pmid: 28581456
153 M Meisel, R Hinterleitner, A Pacis, L Chen, ZM Earley, T Mayassi, JF Pierre, JD Ernest, HJ Galipeau, N Thuille, R Bouziat, M Buscarlet, DL Ringus, Y Wang, Y Li, V Dinh, SM Kim, BD McDonald, MA Zurenski, MW Musch, GC Furtado, SA Lira, G Baier, EB Chang, AM Eren, CR Weber, L Busque, LA Godley, EF Verdú, LB Barreiro, B Jabri. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 2018; 557(7706): 580–584
https://doi.org/10.1038/s41586-018-0125-z pmid: 29769727
154 Q Zhang, K Zhao, Q Shen, Y Han, Y Gu, X Li, D Zhao, Y Liu, C Wang, X Zhang, X Su, J Liu, W Ge, RL Levine, N Li, X Cao. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 2015; 525(7569): 389–393
https://doi.org/10.1038/nature15252 pmid: 26287468
[1] Chen Zhang, Jiandong Zhang, Fan Liang, Han Guo, Sanhui Gao, Fuying Yang, Hua Guo, Guizhen Wang, Wei Wang, Guangbiao Zhou. Innate immune checkpoint Siglec10 in cancers: mining of comprehensive omics data and validation in patient samples[J]. Front. Med., 2022, 16(4): 596-609.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed