Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (1) : 79-90    https://doi.org/10.1007/s11684-020-0783-8
RESEARCH ARTICLE
Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition
Baokai Dou1,2, Shichun Li1,3, Luyao Wei1,3, Lixin Wang1, Shiguo Zhu1, Zhengtao Wang2, Zunji Ke3, Kaixian Chen2(), Zhifei Wang1,3()
1. School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
2. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
3. Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
 Download: PDF(1461 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2+ NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV’s effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.

Keywords astragaloside IV      brain ischemia      natural killer cells      histone deacetylase      nuclear factor-κB     
Corresponding Author(s): Kaixian Chen,Zhifei Wang   
Just Accepted Date: 15 September 2020   Online First Date: 17 December 2020    Issue Date: 11 February 2021
 Cite this article:   
Baokai Dou,Shichun Li,Luyao Wei, et al. Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition[J]. Front. Med., 2021, 15(1): 79-90.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0783-8
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I1/79
Fig.1  ASIV improved functional deficits and reduced cerebral infarction in MCAO rats. (A) The chemical structure of ASIV. (B) ASIV at 20 mg/kg robustly increased the rotarod retention time of MCAO rats, and this effect persisted for at least 7 days after MCAO. (C) ASIV at 5, 10, and 20 mg/kg markedly reduced neurological deficit score of MCAO rats on day 1, and ASIV at the highest dosage consistently provided protection for at least 7 days. (D) ASIV dose-dependently reduced brain infarct volume in MCAO rats on day 7. #P<0.05, ##P<0.01, ###P<0.001 vs. sham; *P<0.05, **P<0.01, ***P<0.001 vs. MCAO; n = 8.
Parameter Day Sham MCAO MCAO+ 5 mg/kg ASIV MCAO+ 10 mg/kg ASIV MCAO+ 20 mg/kg ASIV
Max contact area (mm2) 1 118.2±12.0 56.6±9.3### 77.3±12.4 97.8±10.2* 97.8±6.7**
3 110.1±8.4 78.4±5.8# 95.7±10.1 102.1±6.5 105.3±7.6*
7 123.5±5.3 71.8±10.6### 92.2±10.8 80.9±9.7 107.5±6.6**
Max contact max intensity 1 188.1±6.1 134.5±12.6## 155.9±11.4 175.7±9.5 176.9±9.1*
3 199.9±4.1 165.5±10.9# 181.7±18.8 190.3±2.7 193.0±5.8*
7 203.0±2.2 166.6±16.2## 184.4±7.7 176.1±12.7 197.9±2.3*
Max contact mean intensity 1 85.1±3.2 64.4±3.1## 72.9±3.0 79.7±4.2 78.1±3.7*
3 86.2±2.3 74.4±2.4# 81.0±4.5 82.9±1.6 84.9±2.6*
7 88.7±2.6 73.9±4.2## 78.9±3.2 76.3±3.8 84.9±1.9*
Print width (mm) 1 20.2±0.7 12.2±0.9### 13.2±1.6 15.0±0.6 16.4±0.6**
3 19.1±0.6 16.1±0.7 17.8±1.5 17.2±0.7 18.4±0.4
7 21.6±1.0 17.9±0.8 20.1±0.6 19.1±0.3 19.7±0.6
Print area (mm2) 1 133.2±5.1 75.8±11.1# 90.5±13.8 115.5±9.9 125.0±12.4*
3 131.6±9.6 91.5±6.1 109.3±10.6 118.2±8.0 119.7±8.2
7 151.2±15.0 96.7±11.2 111.7±11.6 94.3±11.0 128.1±8.8
Mean intensity 1 87.9±2.6 67.4±2.7## 74.8±3.5 83±4.4* 81.4±3.8*
3 90.6±2.3 79.7±2.1# 85.0±5.3 87.5±1.7 89.6±2.8*
7 92.9±2.3 77.6±4.6## 83.1±3.2 80.1±4.1 89.4±1.9*
Swing speed (mm/s) 1 964.5±75.4 568.1±86.1## 846.6±147.1 845.6±22.0* 893.2±54.5**
3 1011.2±73.1 809.8±82.2 1036.1±62.7 952.7±60.5 929.0±50.7
7 1024.5±111.8 897.7±46.1 1097.1±60.1 852.4±60.8 958.9±37.4
Stride length (mm) 1 123.0±5.5 86.0±3.5### 93.9±5.6 102.0±7.8 110.6±5.4**
3 128.8±7.1 117.0±7.9 132.1±6.1 132.1±6.4 123.0±4.9
7 119.8±5.4 128.9±5.1 132.4±5.9 114.9±8.2 133.9±5.8
Duration (s) 1 1.2±0.1 2.5±0.2### 2.2±0.2 1.8±0.2 1.6±0.1**
3 1.2±0.2 1.8±0.2 1.1±0.1 1.3±0.1 1.5±0.2
7 1.4±0.2 1.3±0.1 1.2±0.1 1.4±0.1 1.2±0.1
Average speed (mm/s) 1 343.6±24.4 158.1±16.9### 178.5±16.5 232.9±21.3 258.4±25.5*
3 319.1±29.7 253.7±32.1 360.9±18.8 318.8±30.4 292.3±21.7
7 298.4±28.4 310.5±24.3 352.4±24.4 297.1±16.5 334.3±20.0
Tab.1  ASIV ameliorated gait deficits in MCAO rats
Fig.2  ASIV suppressed brain infiltration of NK cells and reversed NK cell deficiency in the periphery after brain ischemia. (A) As assessed by immunohistochemistry, abundant CD161+ cells were accumulated in the ischemic cortex and this accumulation was robustly inhibited by ASIV. (B) Flow cytometry revealed that ASIV markedly suppressed the infiltration of NK cells (CD161+CD3) into the ischemic hemisphere. Simultaneously, the NK cell levels were significantly decreased in the spleen and blood after brain ischemia, which were restored by ASIV treatment. ***P<0.001, **P<0.01, *P<0.05, n = 8.
Fig.3  ASIV downregulated CCL2 and CCR2 in the ischemic brain and on brain-infiltrated NK cells, respectively. (A) ASIV significantly reduced MCAO-induced upregulation of CCL2 mRNA levels. (B) Abundant CCL2 was observed in the ischemic cortex and this upregulation was markedly suppressed by ASIV. (C) CCL2 was colocalized with astrocytes in the ischemic bran. (D) ASIV markedly suppressed CCR2+ NK cell levels in the ischemic brain. ***P<0.001, **P<0.01, *P<0.05, n = 8.
Fig.4  ASIV decreased IFN-g production in the ischemia cortex and NKG2D expression on brain-infiltrated NK cells. (A, B) Both mRNA and protein levels of IFN-g were markedly increased in the ischemic cortex and were robustly reduced by ASIV. (C) NKG2D+ NK cell levels were increased in the ischemic brain and were significantly reduced by ASIV. ***P<0.001, **P<0.01, *P<0.05, n = 8.
Fig.5  ASIV increased acetylation of histone H3 and p65, and inhibited p65 nuclear translocation in the ischemic brain. (A) ASIV restored ac-H3 levels in the ischemic cortex. (B) ASIV significantly increased ac-p65 levels in the ischemic cortex. (C, D) MCAO-induced nuclear translocation of p65 was markedly inhibited by ASIV, as assessed by Western blotting and immunofluorescent staining, respectively. ***P<0.001, **P<0.01, *P<0.05, n = 8.
Fig.6  ASIV and VPA reduced CCL2 expression, restored p65 acetylation, and inhibited p65 nuclear translocation in OGD-treated primary cultures of rat cortical astrocyte. (A–C) OGD-induced upregulation in CCL2 mRNA levels and protein expression in astrocytes was reduced by ASIV and VPA. (D) ASIV and VPA restored the acetylation of p65 in OGD-treated astrocytes. (E) ASIV and VPA inhibited the nuclear translocation of p65 in OGD-treated astrocytes. ***P<0.001, **P<0.01, *P<0.05, n = 3.
1 K Shi, DC Tian, ZG Li, AF Ducruet, MT Lawton, FD Shi. Global brain inflammation in stroke. Lancet Neurol 2019; 18(11): 1058–1066
https://doi.org/10.1016/S1474-4422(19)30078-X pmid: 31296369
2 Y Fu, Q Liu, J Anrather, FD Shi. Immune interventions in stroke. Nat Rev Neurol 2015; 11(9): 524–535
https://doi.org/10.1038/nrneurol.2015.144 pmid: 26303850
3 C Iadecola, J Anrather. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17(7): 796–808
https://doi.org/10.1038/nm.2399 pmid: 21738161
4 E Vivier, DH Raulet, A Moretta, MA Caligiuri, L Zitvogel, LL Lanier, WM Yokoyama, S Ugolini. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331(6013): 44–49
https://doi.org/10.1126/science.1198687 pmid: 21212348
5 Y Gan, Q Liu, W Wu, JX Yin, XF Bai, R Shen, Y Wang, J Chen, A La Cava, J Poursine-Laurent, W Yokoyama, FD Shi. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci USA 2014; 111(7): 2704–2709
https://doi.org/10.1073/pnas.1315943111 pmid: 24550298
6 Y Zhang, Z Gao, D Wang, T Zhang, B Sun, L Mu, J Wang, Y Liu, Q Kong, X Liu, Y Zhang, H Zhang, J He, H Li, G Wang. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 2014; 11(1): 79
https://doi.org/10.1186/1742-2094-11-79 pmid: 24742325
7 C Chen, QD Ai, SF Chu, Z Zhang, NH Chen. NK cells in cerebral ischemia. Biomed Pharmacother 2019; 109: 547–554
https://doi.org/10.1016/j.biopha.2018.10.103 pmid: 30399590
8 CZ Hao, F Wu, J Shen, L Lu, DL Fu, WJ Liao, GQ Zheng. Clinical efficacy and safety of Buyang Huanwu Decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials. Evid Based Complement Alternat Med 2012; 2012: 630124
https://doi.org/10.1155/2012/630124 pmid: 23193426
9 X Duan, J Wu, K Wang, S Liu, D Zhang, X Zhang, B. Zhang Meta-analysis of efficacy of Huangqi Injection in the treatment of cerebral infarction. Chin J Pharmacoepidemiol (Yao Wu Liu Xing Bing Xue Za Zhi) 2017; (9): 607–612 (in Chinese)
10 PK Lai, JY Chan, L Cheng, CP Lau, SQ Han, PC Leung, KP Fung, CB Lau. Isolation of anti-inflammatory fractions and compounds from the root of Astragalus membranaceus. Phytother Res 2013; 27(4): 581–587
https://doi.org/10.1002/ptr.4759 pmid: 22693074
11 HL Wang, QH Zhou, MB Xu, XL Zhou, GQ Zheng. Astragaloside IV for experimental focal cerebral ischemia: preclinical evidence and possible mechanisms. Oxid Med Cell Longev 2017; 2017: 8424326
https://doi.org/10.1155/2017/8424326 pmid: 28303172
12 YP Wang, XY Li, CQ Song, ZB Hu. Effect of astragaloside IV on T, B lymphocyte proliferation and peritoneal macrophage function in mice. Acta Pharmacol Sin 2002; 23(3): 263–266
pmid: 11918853
13 L Yang, F Xing, X Han, Q Li, H Wu, H Shi, Z Wang, F Huang, X Wu. Astragaloside IV regulates differentiation and induces apoptosis of activated CD4+ T cells in the pathogenesis of experimental autoimmune encephalomyelitis. Toxicol Appl Pharmacol 2019; 362: 105–115
https://doi.org/10.1016/j.taap.2018.10.024 pmid: 30385269
14 B Dou, W Zhou, S Li, L Wang, X Wu, Y Li, H Guan, C Wang, S Zhu, Z Ke, C Huang, Z Wang. Buyang Huanwu Decoction attenuates infiltration of natural killer cells and protects against ischemic brain injury. Cell Physiol Biochem 2018; 50(4): 1286–1300
https://doi.org/10.1159/000494587 pmid: 30355926
15 Z Wang, Y Leng, J Wang, HM Liao, J Bergman, P Leeds, A Kozikowski, DM Chuang. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep 2016; 6(1): 19626
https://doi.org/10.1038/srep19626 pmid: 26790818
16 Z Wang, LK Tsai, J Munasinghe, Y Leng, EB Fessler, F Chibane, P Leeds, DM Chuang. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012; 43(9): 2430–2436
https://doi.org/10.1161/STROKEAHA.112.652545 pmid: 22811460
17 Z Wang, Y Leng, LK Tsai, P Leeds, DM Chuang. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 2011; 31(1): 52–57
https://doi.org/10.1038/jcbfm.2010.195 pmid: 20978517
18 ZF Wang, XC Tang. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Lett 2007; 581(4): 596–602
https://doi.org/10.1016/j.febslet.2007.01.016 pmid: 17257593
19 R Giorda, WA Rudert, C Vavassori, WH Chambers, JC Hiserodt, M Trucco. NKR-P1, a signal transduction molecule on natural killer cells. Science 1990; 249(4974): 1298–1300
https://doi.org/10.1126/science.2399464 pmid: 2399464
20 J Lehmann, W Härtig, A Seidel, C Füldner, C Hobohm, J Grosche, M Krueger, D Michalski. Inflammatory cell recruitment after experimental thromboembolic stroke in rats. Neuroscience 2014; 279: 139–154
https://doi.org/10.1016/j.neuroscience.2014.08.023 pmid: 25168731
21 M Mirabelli-Badenier, V Braunersreuther, GL Viviani, F Dallegri, A Quercioli, E Veneselli, F Mach, F Montecucco. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 2011; 105(3): 409–420
https://doi.org/10.1160/TH10-10-0662 pmid: 21174009
22 X Wang, TL Yue, FC Barone, GZ Feuerstein. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke 1995; 26(4): 661–666
https://doi.org/10.1161/01.STR.26.4.661 pmid: 7709415
23 PM Hughes, PR Allegrini, M Rudin, VH Perry, AK Mir, C Wiessner. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002; 22(3): 308–317
https://doi.org/10.1097/00004647-200203000-00008 pmid: 11891436
24 OB Dimitrijevic, SM Stamatovic, RF Keep, AV Andjelkovic. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007; 38(4): 1345–1353
https://doi.org/10.1161/01.STR.0000259709.16654.8f pmid: 17332467
25 JK Strecker, J Minnerup, K Schütte-Nütgen, B Gess, WR Schäbitz, M Schilling. Monocyte chemoattractant protein-1-deficiency results in altered blood-brain barrier breakdown after experimental stroke. Stroke 2013; 44(9): 2536–2544
https://doi.org/10.1161/STROKEAHA.111.000528 pmid: 23821228
26 A Ueda, K Okuda, S Ohno, A Shirai, T Igarashi, K Matsunaga, J Fukushima, S Kawamoto, Y Ishigatsubo, T Okubo. NF-κB and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 1994; 153(5): 2052–2063
pmid: 8051410
27 B Huang, XD Yang, A Lamb, LF Chen. Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway. Cell Signal 2010; 22(9): 1282–1290
https://doi.org/10.1016/j.cellsig.2010.03.017 pmid: 20363318
28 F Yeung, JE Hoberg, CS Ramsey, MD Keller, DR Jones, RA Frye, MW Mayo. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23(12): 2369–2380
https://doi.org/10.1038/sj.emboj.7600244 pmid: 15152190
29 Y Liu, PW Smith, DR Jones. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 2006; 26(23): 8683–8696
https://doi.org/10.1128/MCB.00940-06 pmid: 17000776
30 Lf Chen, W Fischle, E Verdin, WC Greene. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 2001; 293(5535): 1653–1657
https://doi.org/10.1126/science.1062374 pmid: 11533489
31 E Seto, M Yoshida. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014; 6(4): a018713
https://doi.org/10.1101/cshperspect.a018713 pmid: 24691964
32 G Yilmaz, TV Arumugam, KY Stokes, DN Granger. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 2006; 113(17): 2105–2112
https://doi.org/10.1161/CIRCULATIONAHA.105.593046 pmid: 16636173
33 S Bauer, V Groh, J Wu, A Steinle, JH Phillips, LL Lanier, T Spies. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285(5428): 727–729
https://doi.org/10.1126/science.285.5428.727 pmid: 10426993
34 W Ellmeier, C Seiser. Histone deacetylase function in CD4+ T cells. Nat Rev Immunol 2018; 18(10): 617–634
https://doi.org/10.1038/s41577-018-0037-z pmid: 30022149
35 J Bhat, S Dubin, A Dananberg, ES Quabius, J Fritsch, CM Dowds, A Saxena, G Chitadze, M Lettau, D Kabelitz. Histone deacetylase inhibitor modulates NKG2D receptor expression and memory phenotype of human γ/δ T cells upon interaction with tumor cells. Front Immunol 2019; 10: 569
https://doi.org/10.3389/fimmu.2019.00569 pmid: 30972064
36 S López-Cobo, N Pieper, C Campos-Silva, EM García-Cuesta, HT Reyburn, A Paschen, M Valés-Gómez. Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors. OncoImmunology 2017; 7(2): e1392426
https://doi.org/10.1080/2162402X.2017.1392426 pmid: 29308322
37 L Ni, L Wang, C Yao, Z Ni, F Liu, C Gong, X Zhu, X Yan, SS Watowich, DA Lee, S Zhu. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep 2017; 7: 45266
https://doi.org/10.1038/srep45266 pmid: 28338101
38 E Ziesché, D Kettner-Buhrow, A Weber, T Wittwer, L Jurida, J Soelch, H Müller, D Newel, P Kronich, H Schneider, O Dittrich-Breiholz, S Bhaskara, SW Hiebert, MO Hottiger, H Li, E Burstein, ML Schmitz, M Kracht. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Res 2013; 41(1): 90–109
https://doi.org/10.1093/nar/gks916 pmid: 23087373
39 NG Leus, MR Zwinderman, FJ Dekker. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr Opin Chem Biol 2016; 33: 160–168
https://doi.org/10.1016/j.cbpa.2016.06.019 pmid: 27371876
40 C Meisel, A Meisel. Suppressing immunosuppression after stroke. N Engl J Med 2011; 365(22): 2134–2136
https://doi.org/10.1056/NEJMcibr1112454 pmid: 22129259
41 Q Liu, WN Jin, Y Liu, K Shi, H Sun, F Zhang, C Zhang, RJ Gonzales, KN Sheth, A La Cava, FD Shi. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity 2017; 46(3): 474–487
https://doi.org/10.1016/j.immuni.2017.02.015 pmid: 28314594
42 R Liu, H Jiang, Y Tian, W Zhao, X Wu. Astragaloside IV protects against polymicrobial sepsis through inhibiting inflammatory response and apoptosis of lymphocytes. J Surg Res 2016; 200(1): 315–323
https://doi.org/10.1016/j.jss.2015.08.024 pmid: 26375505
[1] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[2] Hong LI, Shaoqin CHEN, Yi SHU, Yongjun CHEN, Ying SU, Xin WANG, Shengquan ZOU. Effects of hydralazine and valproate on the expression of E-cadherin gene and the invasiveness of QBC939 Cells[J]. Front Med Chin, 2009, 3(2): 153-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed