|
|
Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition |
Baokai Dou1,2, Shichun Li1,3, Luyao Wei1,3, Lixin Wang1, Shiguo Zhu1, Zhengtao Wang2, Zunji Ke3, Kaixian Chen2( ), Zhifei Wang1,3( ) |
1. School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China 2. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China 3. Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China |
|
|
Abstract Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2+ NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV’s effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.
|
Keywords
astragaloside IV
brain ischemia
natural killer cells
histone deacetylase
nuclear factor-κB
|
Corresponding Author(s):
Kaixian Chen,Zhifei Wang
|
Just Accepted Date: 15 September 2020
Online First Date: 17 December 2020
Issue Date: 11 February 2021
|
|
1 |
K Shi, DC Tian, ZG Li, AF Ducruet, MT Lawton, FD Shi. Global brain inflammation in stroke. Lancet Neurol 2019; 18(11): 1058–1066
https://doi.org/10.1016/S1474-4422(19)30078-X
pmid: 31296369
|
2 |
Y Fu, Q Liu, J Anrather, FD Shi. Immune interventions in stroke. Nat Rev Neurol 2015; 11(9): 524–535
https://doi.org/10.1038/nrneurol.2015.144
pmid: 26303850
|
3 |
C Iadecola, J Anrather. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17(7): 796–808
https://doi.org/10.1038/nm.2399
pmid: 21738161
|
4 |
E Vivier, DH Raulet, A Moretta, MA Caligiuri, L Zitvogel, LL Lanier, WM Yokoyama, S Ugolini. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331(6013): 44–49
https://doi.org/10.1126/science.1198687
pmid: 21212348
|
5 |
Y Gan, Q Liu, W Wu, JX Yin, XF Bai, R Shen, Y Wang, J Chen, A La Cava, J Poursine-Laurent, W Yokoyama, FD Shi. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci USA 2014; 111(7): 2704–2709
https://doi.org/10.1073/pnas.1315943111
pmid: 24550298
|
6 |
Y Zhang, Z Gao, D Wang, T Zhang, B Sun, L Mu, J Wang, Y Liu, Q Kong, X Liu, Y Zhang, H Zhang, J He, H Li, G Wang. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 2014; 11(1): 79
https://doi.org/10.1186/1742-2094-11-79
pmid: 24742325
|
7 |
C Chen, QD Ai, SF Chu, Z Zhang, NH Chen. NK cells in cerebral ischemia. Biomed Pharmacother 2019; 109: 547–554
https://doi.org/10.1016/j.biopha.2018.10.103
pmid: 30399590
|
8 |
CZ Hao, F Wu, J Shen, L Lu, DL Fu, WJ Liao, GQ Zheng. Clinical efficacy and safety of Buyang Huanwu Decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials. Evid Based Complement Alternat Med 2012; 2012: 630124
https://doi.org/10.1155/2012/630124
pmid: 23193426
|
9 |
X Duan, J Wu, K Wang, S Liu, D Zhang, X Zhang, B. Zhang Meta-analysis of efficacy of Huangqi Injection in the treatment of cerebral infarction. Chin J Pharmacoepidemiol (Yao Wu Liu Xing Bing Xue Za Zhi) 2017; (9): 607–612 (in Chinese)
|
10 |
PK Lai, JY Chan, L Cheng, CP Lau, SQ Han, PC Leung, KP Fung, CB Lau. Isolation of anti-inflammatory fractions and compounds from the root of Astragalus membranaceus. Phytother Res 2013; 27(4): 581–587
https://doi.org/10.1002/ptr.4759
pmid: 22693074
|
11 |
HL Wang, QH Zhou, MB Xu, XL Zhou, GQ Zheng. Astragaloside IV for experimental focal cerebral ischemia: preclinical evidence and possible mechanisms. Oxid Med Cell Longev 2017; 2017: 8424326
https://doi.org/10.1155/2017/8424326
pmid: 28303172
|
12 |
YP Wang, XY Li, CQ Song, ZB Hu. Effect of astragaloside IV on T, B lymphocyte proliferation and peritoneal macrophage function in mice. Acta Pharmacol Sin 2002; 23(3): 263–266
pmid: 11918853
|
13 |
L Yang, F Xing, X Han, Q Li, H Wu, H Shi, Z Wang, F Huang, X Wu. Astragaloside IV regulates differentiation and induces apoptosis of activated CD4+ T cells in the pathogenesis of experimental autoimmune encephalomyelitis. Toxicol Appl Pharmacol 2019; 362: 105–115
https://doi.org/10.1016/j.taap.2018.10.024
pmid: 30385269
|
14 |
B Dou, W Zhou, S Li, L Wang, X Wu, Y Li, H Guan, C Wang, S Zhu, Z Ke, C Huang, Z Wang. Buyang Huanwu Decoction attenuates infiltration of natural killer cells and protects against ischemic brain injury. Cell Physiol Biochem 2018; 50(4): 1286–1300
https://doi.org/10.1159/000494587
pmid: 30355926
|
15 |
Z Wang, Y Leng, J Wang, HM Liao, J Bergman, P Leeds, A Kozikowski, DM Chuang. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep 2016; 6(1): 19626
https://doi.org/10.1038/srep19626
pmid: 26790818
|
16 |
Z Wang, LK Tsai, J Munasinghe, Y Leng, EB Fessler, F Chibane, P Leeds, DM Chuang. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012; 43(9): 2430–2436
https://doi.org/10.1161/STROKEAHA.112.652545
pmid: 22811460
|
17 |
Z Wang, Y Leng, LK Tsai, P Leeds, DM Chuang. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 2011; 31(1): 52–57
https://doi.org/10.1038/jcbfm.2010.195
pmid: 20978517
|
18 |
ZF Wang, XC Tang. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Lett 2007; 581(4): 596–602
https://doi.org/10.1016/j.febslet.2007.01.016
pmid: 17257593
|
19 |
R Giorda, WA Rudert, C Vavassori, WH Chambers, JC Hiserodt, M Trucco. NKR-P1, a signal transduction molecule on natural killer cells. Science 1990; 249(4974): 1298–1300
https://doi.org/10.1126/science.2399464
pmid: 2399464
|
20 |
J Lehmann, W Härtig, A Seidel, C Füldner, C Hobohm, J Grosche, M Krueger, D Michalski. Inflammatory cell recruitment after experimental thromboembolic stroke in rats. Neuroscience 2014; 279: 139–154
https://doi.org/10.1016/j.neuroscience.2014.08.023
pmid: 25168731
|
21 |
M Mirabelli-Badenier, V Braunersreuther, GL Viviani, F Dallegri, A Quercioli, E Veneselli, F Mach, F Montecucco. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 2011; 105(3): 409–420
https://doi.org/10.1160/TH10-10-0662
pmid: 21174009
|
22 |
X Wang, TL Yue, FC Barone, GZ Feuerstein. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke 1995; 26(4): 661–666
https://doi.org/10.1161/01.STR.26.4.661
pmid: 7709415
|
23 |
PM Hughes, PR Allegrini, M Rudin, VH Perry, AK Mir, C Wiessner. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002; 22(3): 308–317
https://doi.org/10.1097/00004647-200203000-00008
pmid: 11891436
|
24 |
OB Dimitrijevic, SM Stamatovic, RF Keep, AV Andjelkovic. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007; 38(4): 1345–1353
https://doi.org/10.1161/01.STR.0000259709.16654.8f
pmid: 17332467
|
25 |
JK Strecker, J Minnerup, K Schütte-Nütgen, B Gess, WR Schäbitz, M Schilling. Monocyte chemoattractant protein-1-deficiency results in altered blood-brain barrier breakdown after experimental stroke. Stroke 2013; 44(9): 2536–2544
https://doi.org/10.1161/STROKEAHA.111.000528
pmid: 23821228
|
26 |
A Ueda, K Okuda, S Ohno, A Shirai, T Igarashi, K Matsunaga, J Fukushima, S Kawamoto, Y Ishigatsubo, T Okubo. NF-κB and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 1994; 153(5): 2052–2063
pmid: 8051410
|
27 |
B Huang, XD Yang, A Lamb, LF Chen. Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway. Cell Signal 2010; 22(9): 1282–1290
https://doi.org/10.1016/j.cellsig.2010.03.017
pmid: 20363318
|
28 |
F Yeung, JE Hoberg, CS Ramsey, MD Keller, DR Jones, RA Frye, MW Mayo. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23(12): 2369–2380
https://doi.org/10.1038/sj.emboj.7600244
pmid: 15152190
|
29 |
Y Liu, PW Smith, DR Jones. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 2006; 26(23): 8683–8696
https://doi.org/10.1128/MCB.00940-06
pmid: 17000776
|
30 |
Lf Chen, W Fischle, E Verdin, WC Greene. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 2001; 293(5535): 1653–1657
https://doi.org/10.1126/science.1062374
pmid: 11533489
|
31 |
E Seto, M Yoshida. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014; 6(4): a018713
https://doi.org/10.1101/cshperspect.a018713
pmid: 24691964
|
32 |
G Yilmaz, TV Arumugam, KY Stokes, DN Granger. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 2006; 113(17): 2105–2112
https://doi.org/10.1161/CIRCULATIONAHA.105.593046
pmid: 16636173
|
33 |
S Bauer, V Groh, J Wu, A Steinle, JH Phillips, LL Lanier, T Spies. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285(5428): 727–729
https://doi.org/10.1126/science.285.5428.727
pmid: 10426993
|
34 |
W Ellmeier, C Seiser. Histone deacetylase function in CD4+ T cells. Nat Rev Immunol 2018; 18(10): 617–634
https://doi.org/10.1038/s41577-018-0037-z
pmid: 30022149
|
35 |
J Bhat, S Dubin, A Dananberg, ES Quabius, J Fritsch, CM Dowds, A Saxena, G Chitadze, M Lettau, D Kabelitz. Histone deacetylase inhibitor modulates NKG2D receptor expression and memory phenotype of human γ/δ T cells upon interaction with tumor cells. Front Immunol 2019; 10: 569
https://doi.org/10.3389/fimmu.2019.00569
pmid: 30972064
|
36 |
S López-Cobo, N Pieper, C Campos-Silva, EM García-Cuesta, HT Reyburn, A Paschen, M Valés-Gómez. Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors. OncoImmunology 2017; 7(2): e1392426
https://doi.org/10.1080/2162402X.2017.1392426
pmid: 29308322
|
37 |
L Ni, L Wang, C Yao, Z Ni, F Liu, C Gong, X Zhu, X Yan, SS Watowich, DA Lee, S Zhu. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep 2017; 7: 45266
https://doi.org/10.1038/srep45266
pmid: 28338101
|
38 |
E Ziesché, D Kettner-Buhrow, A Weber, T Wittwer, L Jurida, J Soelch, H Müller, D Newel, P Kronich, H Schneider, O Dittrich-Breiholz, S Bhaskara, SW Hiebert, MO Hottiger, H Li, E Burstein, ML Schmitz, M Kracht. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Res 2013; 41(1): 90–109
https://doi.org/10.1093/nar/gks916
pmid: 23087373
|
39 |
NG Leus, MR Zwinderman, FJ Dekker. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr Opin Chem Biol 2016; 33: 160–168
https://doi.org/10.1016/j.cbpa.2016.06.019
pmid: 27371876
|
40 |
C Meisel, A Meisel. Suppressing immunosuppression after stroke. N Engl J Med 2011; 365(22): 2134–2136
https://doi.org/10.1056/NEJMcibr1112454
pmid: 22129259
|
41 |
Q Liu, WN Jin, Y Liu, K Shi, H Sun, F Zhang, C Zhang, RJ Gonzales, KN Sheth, A La Cava, FD Shi. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity 2017; 46(3): 474–487
https://doi.org/10.1016/j.immuni.2017.02.015
pmid: 28314594
|
42 |
R Liu, H Jiang, Y Tian, W Zhao, X Wu. Astragaloside IV protects against polymicrobial sepsis through inhibiting inflammatory response and apoptosis of lymphocytes. J Surg Res 2016; 200(1): 315–323
https://doi.org/10.1016/j.jss.2015.08.024
pmid: 26375505
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|