Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (5) : 740-749    https://doi.org/10.1007/s11684-020-0794-5
RESEARCH ARTICLE
EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application
Long Chen1,2, Bin Gu1, Zhongpeng Wang1, Lei Zhang2, Minpeng Xu1, Shuang Liu2, Feng He1,2, Dong Ming1,2()
1. Neural Engineering & Rehabilitation Laboratory, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2. Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
 Download: PDF(463 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stroke is one of the most serious diseases that threaten human life and health. It is a major cause of death and disability in the clinic. New strategies for motor rehabilitation after stroke are undergoing exploration. We aimed to develop a novel artificial neural rehabilitation system, which integrates brain--computer interface (BCI) and functional electrical stimulation (FES) technologies, for limb motor function recovery after stroke. We conducted clinical trials (including controlled trials) in 32 patients with chronic stroke. Patients were randomly divided into the BCI-FES group and the neuromuscular electrical stimulation (NMES) group. The changes in outcome measures during intervention were compared between groups, and the trends of ERD values based on EEG were analyzed for BCI-FES group. Results showed that the increase in Fugl Meyer Assessment of the Upper Extremity (FMA-UE) and Kendall Manual Muscle Testing (Kendall MMT) scores of the BCI-FES group was significantly higher than that in the sham group, which indicated the practicality and superiority of the BCI-FES system in clinical practice. The change in the laterality coefficient (LC) values based on μ-ERD (ΔLCm-ERD) had high significant positive correlation with the change in FMA-UE(r= 0.6093, P=0.012), which provides theoretical basis for exploring novel objective evaluation methods.

Keywords brain–computer interface      functional electrical stimulation      electroencephalogram      laterality coefficient      chronic stroke     
Corresponding Author(s): Dong Ming   
Just Accepted Date: 18 March 2021   Online First Date: 21 June 2021    Issue Date: 01 November 2021
 Cite this article:   
Long Chen,Bin Gu,Zhongpeng Wang, et al. EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application[J]. Front. Med., 2021, 15(5): 740-749.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0794-5
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I5/740
Fig.1  Procedure of the clinical test with EEG-control FES rehabilitation system. The whole flow includes calibration session (offline) and intervention session (online), and the classifier applied in the online session was established in the offline session.
Fig.2  Probability density distribution of classification decision value for offline calibration session.
Fig.3  The flow chart for patient recruitment.
Demographic data BCI-FES group
(n = 16)
Control group
(n = 16)
t P
Sex (female) 2 5 / 1
Injury side (left) 7 7 / 1
Age (year) 59.31 57.93 0.705 0.486
Time (month) 6.27 5.73 -1.324 0.201
FMA-UE 8 2.81 0.654 0.518
MMT (Kendall) 63.6% 66.5% 0.996 0.327
MBI 68.9 62.1 0.802 0.429
Tab.1  Comparison of the general information between groups (n = 32)
Fig.4  Mean changes in the FMA-UE (A), Kendall MMT (B), and MBI scores (C) before and after the whole therapy by intervention group.
Fig.5  Change trends of m-ERD and b-ERD values along with the rehabilitation process.
Variables ?LCm-ERD ?LCb-ERD
?FMA-UE r=0.609, P=0.012 r=0.490, P=0.04
?MMT r= 0.610, P=0.011 r= 0.460, P=0.06
?BMI r= 0.049, P=0.86 r= 0.160, P=0.55
Tab.2  Correlation between ?LCm-ERD /?LCb-ERD and changes of outcome measures
1 EJ Benjamin, P Muntner, A Alonso, MS Bittencourt, CW Callaway, AP Carson, AM Chamberlain, AR Chang, S Cheng, SR Das, FN Delling, L Djousse, MSV Elkind, JF Ferguson, M Fornage, LC Jordan, SS Khan, BM Kissela, KL Knutson, TW Kwan, DT Lackland, TT Lewis, JH Lichtman, CT Longenecker, MS Loop, PL Lutsey, SS Martin, K Matsushita, AE Moran, ME Mussolino, M O’Flaherty, A Pandey, AM Perak, WD Rosamond, GA Roth, UKA Sampson, GM Satou, EB Schroeder, SH Shah, NL Spartano, A Stokes, DL Tirschwell, CW Tsao, MP Turakhia, LB VanWagner, JT Wilkins, SS Wong, SS Virani. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 2019; 139(10): e56–e528
https://doi.org/10.1161/CIR.0000000000000659 pmid: 30700139
2 Q Yang, X Tong, L Schieb, A Vaughan, C Gillespie, JL Wiltz, SC King, E Odom, R Merritt, Y Hong, MG George. Vital signs: recent trends in stroke death rates—United States, 2000–2015. MMWR Morb Mortal Wkly Rep 2017; 66(35): 933–939
https://doi.org/10.15585/mmwr.mm6635e1 pmid: 28880858
3 EJ Benjamin, MJ Blaha, SE Chiuve, M Cushman, SR Das, R Deo, SD de Ferranti, J Floyd, M Fornage, C Gillespie, CR Isasi, MC Jiménez, LC Jordan, SE Judd, D Lackland, JH Lichtman, L Lisabeth, S Liu, CT Longenecker, RH Mackey, K Matsushita, D Mozaffarian, ME Mussolino, K Nasir, RW Neumar, L Palaniappan, DK Pandey, RR Thiagarajan, MJ Reeves, M Ritchey, CJ Rodriguez, GA Roth, WD Rosamond, C Sasson, A Towfighi, CW Tsao, MB Turner, SS Virani, JH Voeks, JZ Willey, JT Wilkins, JH Wu, HM Alger, SS Wong, P Muntner. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 2017; 135(10): e146–e603
https://doi.org/10.1161/CIR.0000000000000485 pmid: 28122885
4 RJ Nudo, BM Wise, F SiFuentes, GW Milliken. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272(5269): 1791–1794
https://doi.org/10.1126/science.272.5269.1791 pmid: 8650578
5 E Taub, G Uswatte, T Elbert. New treatments in neurorehabili-tation founded on basic research. Nat Rev Neurosci 2002; 3(3): 228–236
https://doi.org/10.1038/nrn754 pmid: 11994754
6 MA Dimyan, LG Cohen. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 2011; 7(2): 76–85
https://doi.org/10.1038/nrneurol.2010.200 pmid: 21243015
7 ME Nelson, WJ Rejeski, SN Blair, PW Duncan, JO Judge, AC King, CA Macera, C Castaneda-Sceppa. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007; 39(8): 1435–1445
https://doi.org/10.1249/mss.0b013e3180616aa2 pmid: 17762378
8 N Takeshima, NL Rogers, ME Rogers, MM Islam, D Koizumi, S Lee. Functional fitness gain varies in older adults depending on exercise mode. Med Sci Sports Exerc 2007; 39(11): 2036–2043
https://doi.org/10.1249/mss.0b013e31814844b7 pmid: 17986913
9 W Yu, C An, H Kang. Effects of resistance exercise using Thera-band on balance of elderly adults: a randomized controlled trial. J Phys Ther Sci 2013; 25(11): 1471–1473
https://doi.org/10.1589/jpts.25.1471 pmid: 24396213
10 T Takahashi, D Koizumi, MM Islam, M Watanabe, M Narita, N Takeshima. Effects of passive exercise machine-based training on day care service user frail elderly. Rigakuryoho Kagaku 2011; 26: 209–213
https://doi.org/10.1589/rika.26.209
11 T Takahashi, MM Islam, D Koizumi, M Narita, N Takeshima. The effects of low intensity exercises performed by community-dwelling chronic stroke patients on passive movement-type machines. Rigakuryoho Kagaku 2012; 27(5): 545–551
https://doi.org/10.1589/rika.27.545
12 DN Rushton. Functional electrical stimulation and rehabilitation—an hypothesis. Med Eng Phys 2003; 25(1): 75–78
https://doi.org/10.1016/S1350-4533(02)00040-1 pmid: 12485788
13 MH Granat, AC Ferguson, BJ Andrews, M Delargy. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury—observed benefits during gait studies. Paraplegia 1993; 31(4): 207–215
https://doi.org/10.1038/sc.1993.39 pmid: 8493035
14 EM Wassermann. Changes in motor representation with recovery of motor function after stroke: combined electrophysiological and imaging studies. EEG Clin Neurophysiol 1995; 97(4): S26
https://doi.org/10.1016/0924-980X(95)92506-H
15 LR Hochberg, MD Serruya, GM Friehs, JA Mukand, M Saleh, AH Caplan, A Branner, D Chen, RD Penn, JP Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442(7099): 164–171
https://doi.org/10.1038/nature04970 pmid: 16838014
16 S Silvoni, A Ramos-Murguialday, M Cavinato, C Volpato, G Cisotto, A Turolla, F Piccione, N Birbaumer. Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 2011; 42(4): 245–252
https://doi.org/10.1177/155005941104200410 pmid: 22208122
17 MA Cervera, SR Soekadar, J Ushiba, JDR Millán, M Liu, N Birbaumer, G Garipelli. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol 2018; 5(5): 651–663
https://doi.org/10.1002/acn3.544 pmid: 29761128
18 S Qiu, W Yi, J Xu, H Qi, J Du, C Wang, F He, D Ming. Event-related β EEG changes during active, passive movement and functional electrical stimulation of the lower limb. IEEE Trans Neural Syst Rehabil Eng 2016; 24(2): 283–290
https://doi.org/10.1109/TNSRE.2015.2476481 pmid: 26441422
19 BM Young, J Williams, V Prabhakaran. BCI-FES: could a new rehabilitation device hold fresh promise for stroke patients? Expert Rev Med Devices 2014; 11(6): 537–539
https://doi.org/10.1586/17434440.2014.941811 pmid: 25060658
20 CM Stinear. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol 2017; 16(10): 826–836
https://doi.org/10.1016/S1474-4422(17)30283-1 pmid: 28920888
21 R Looned, J Webb, ZG Xiao, C Menon. Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 2014; 11(1): 51
https://doi.org/10.1186/1743-0003-11-51 pmid: 24708603
22 A Biasiucci, R Leeb, I Iturrate, S Perdikis, A Al-Khodairy, T Corbet, A Schnider, T Schmidlin, H Zhang, M Bassolino, D Viceic, P Vuadens, AG Guggisberg, JDR Millán. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 2018; 9(1): 2421
https://doi.org/10.1038/s41467-018-04673-z pmid: 29925890
23 AH Do, PT Wang, CE King, A Abiri, Z Nenadic. Brain–computer interface controlled functional electrical stimulation system for ankle movement. J Neuroeng Rehabil 2011; 8(1): 49
https://doi.org/10.1186/1743-0003-8-49 pmid: 21867567
24 CM McCrimmon, CE King, PT Wang, SC Cramer, Z Nenadic, AH Do. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. J Neuroeng Rehabil 2015; 12(1): 57
https://doi.org/10.1186/s12984-015-0050-4 pmid: 26162751
25 X Zhang, AM Elnady, BK Randhawa, LA Boyd, C Menon. Combining mental training and physical training with goal-oriented protocols in stroke rehabilitation: a feasibility case study. Front Hum Neurosci 2018; 12: 125
https://doi.org/10.3389/fnhum.2018.00125 pmid: 29666575
26 T Kim, S Kim, B Lee. Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. Occup Ther Int 2016; 23(1): 39–47
https://doi.org/10.1002/oti.1403 pmid: 26301519
27 E Chung, SI Park, YY Jang, BH Lee. Effects of brain–computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results. J Phys Ther Sci 2015; 27(2): 513–516
https://doi.org/10.1589/jpts.27.513 pmid: 25729205
28 E Chung, JH Kim, DS Park, BH Lee. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial. J Phys Ther Sci 2015; 27(3): 559–562
https://doi.org/10.1589/jpts.27.559 pmid: 25931680
29 YY Jang, TH Kim, BH Lee. Effects of brain–computer interface-controlled functional electrical stimulation training on shoulder subluxation for patients with stroke: a randomized controlled trial. Occup Ther Int 2016; 23(2): 175–185
https://doi.org/10.1002/oti.1422 pmid: 26876690
30 NA Abduallatif, SG Elsherbini, BS Boshra, IA Yassine. Brain–computer interface controlled functional electrical stimulation system for paralyzed arm. 2016 8th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, 2016. 48–51
https://doi.org/10.1109/CIBEC.2016.7836117
31 M Bockbrader, N Annetta, D Friedenberg, M Schwemmer, N Skomrock, S Colachis 4th, M Zhang, C Bouton, A Rezai, G Sharma, WJ Mysiw. Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain–computer interface with forearm transcutaneous muscle stimulation. Arch Phys Med Rehabil 2019; 100(7): 1201–1217
https://doi.org/10.1016/j.apmr.2018.07.445 pmid: 30902630
32 J Likitlersuang, R Koh, X Gong, L Jovanovic, I Bolivar-Tellería, M Myers, J Zariffa, C Márquez-Chin. EEG-controlled functional electrical stimulation therapy with automated grasp selection: a proof-of-concept study. Top Spinal Cord Inj Rehabil 2018; 24(3): 265–274
https://doi.org/10.1310/sci2403-265 pmid: 29997429
33 BC Osuagwu, L Wallace, M Fraser, A Vuckovic. Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study. J Neural Eng 2016; 13(6): 065002
https://doi.org/10.1088/1741-2560/13/6/065002 pmid: 27739405
34 SC Colachis 4th, MA Bockbrader, M Zhang, DA Friedenberg, NV Annetta, MA Schwemmer, ND Skomrock, WJ Mysiw, AR Rezai, HS Bresler, G Sharma. Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia. Front Neurosci 2018; 12: 208
https://doi.org/10.3389/fnins.2018.00208 pmid: 29670506
35 G Pfurtscheller, GR Müller, J Pfurtscheller, HJ Gerner, R Rupp. ‘Thought’—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 2003; 351(1): 33–36
https://doi.org/10.1016/S0304-3940(03)00947-9 pmid: 14550907
36 H Ramoser, J Müller-Gerking, G Pfurtscheller. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 2000; 8(4): 441–446
https://doi.org/10.1109/86.895946 pmid: 11204034
37 S Makeig. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol 1993; 86(4): 283–293
https://doi.org/10.1016/0013-4694(93)90110-H pmid: 7682932
38 G Lioi, M Fleury, S Butet, A Lécuyer, C Barillot, I Bonan. Bimodal EEG-fMRI neurofeedback for stroke rehabilitation: a case report. Ann Phys Rehabil Med 2018; 61: e482–e483
https://doi.org/10.1016/j.rehab.2018.05.1127
39 T Wang, D Mantini, CR Gillebert. The potential of real-time fMRI neurofeedback for stroke rehabilitation: a systematic review. Cortex 2018; 107: 148–165
https://doi.org/10.1016/j.cortex.2017.09.006 pmid: 28992948
40 L Perronnet, A Lécuyer, M Mano, E Bannier, F Lotte, M Clerc, C Barillot. Unimodal versus bimodal EEG-fMRI neurofeedback of a motor imagery task. Front Hum Neurosci 2017; 11: 193
https://doi.org/10.3389/fnhum.2017.00193 pmid: 28473762
41 AA Savelov, MB Shtark, ME Mel’nikov, LI Kozlova, DD Bezmaternykh, EG Verevkin, ED Petrovskii, MA Pokrovskii, GM Tsirkin, PD Rudych. Dynamics of fMRI and EEG parameters in a stroke patient assessed during a neurofeedback course focused on Brodmann Area 4 (M1). Bull Exp Biol Med 2019; 166(3): 394–398
https://doi.org/10.1007/s10517-019-04358-7 pmid: 30627901
42 M Bönstrup, R Schulz, B Cheng, J Feldheim, G Thomalla, F Hummel, C Gerloff. P108. The effect of task effort on recovery-related brain activity following motor stroke assessed with fMRI and EEG. Clin Neurophysiol 2015; 126(8): e102
https://doi.org/10.1016/j.clinph.2015.04.150
43 G Pfurtscheller, C Neuper, C Andrew, G Edlinger. Foot and hand area mu rhythms. Int J Psychophysiol 1997; 26(1–3): 121–135
https://doi.org/10.1016/S0167-8760(97)00760-5 pmid: 9202999
44 HM Hobson, DVM Bishop. Mu suppression—a good measure of the human mirror neuron system? Cortex 2016; 82: 290–310
https://doi.org/10.1016/j.cortex.2016.03.019 pmid: 27180217
45 A Perry, L Stein, S Bentin. Motor and attentional mechanisms involved in social interaction—evidence from mu and alpha EEG suppression. Neuroimage 2011; 58(3): 895–904
https://doi.org/10.1016/j.neuroimage.2011.06.060 pmid: 21742042
46 C Grefkes, GR Fink. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 2014; 13(2): 206–216
https://doi.org/10.1016/S1474-4422(13)70264-3 pmid: 24457190
47 AM Ray, TDC Figueiredo, E López-Larraz, N Birbaumer, A Ramos-Murguialday. Brain oscillatory activity as a biomarker of motor recovery in chronic stroke. Hum Brain Mapp 2020; 41(5): 1296–1308
https://doi.org/10.1002/hbm.24876 pmid: 31778265
48 C Bushnell, JP Bettger, KM Cockroft, SC Cramer, MO Edelen, D Hanley, IL Katzan, S Mattke, DM Nilsen, T Piquado, ER Skidmore, K Wing, G Yenokyan. Chronic stroke outcome measures for motor function intervention trials: expert panel recommendations. Circ Cardiovasc Qual Outcomes 2015; 8(6 Suppl 3): S163–S169
https://doi.org/10.1161/CIRCOUTCOMES.115.002098 pmid: 26515205
49 S Pandian, KN Arya. Stroke-related motor outcome measures: do they quantify the neurophysiological aspects of upper extremity recovery? J Bodyw Mov Ther 2014; 18(3): 412–423
https://doi.org/10.1016/j.jbmt.2013.11.006 pmid: 25042312
50 P Boord, A Barriskill, A Craig, H Nguyen. Brain–computer interface-FES integration: towards a hands-free neuroprosthesis command system. Neuromodulation 2004; 7(4): 267–276
https://doi.org/10.1111/j.1094-7159.2004.04212.x pmid: 22151336
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed