|
|
Distinct gene expression pattern of RUNX1 mutations coordinated by target repression and promoter hypermethylation in acute myeloid leukemia |
Jingming Li1, Wen Jin1,2, Yun Tan1, Beichen Wang1, Xiaoling Wang1, Ming Zhao1, Kankan Wang1,2( ) |
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
|
|
Abstract Runt-related transcription factor 1 (RUNX1) is an essential regulator of normal hematopoiesis. Its dysfunction, caused by either fusions or mutations, is frequently reported in acute myeloid leukemia (AML). However, RUNX1 mutations have been largely under-explored compared with RUNX1 fusions mainly due to their elusive genetic characteristics. Here, based on 1741 patients with AML, we report a unique expression pattern associated with RUNX1 mutations in AML. This expression pattern was coordinated by target repression and promoter hypermethylation. We first reanalyzed a joint AML cohort that consisted of three public cohorts and found that RUNX1 mutations were mainly distributed in the Runt domain and almost mutually exclusive with NPM1 mutations. Then, based on RNA-seq data from The Cancer Genome Atlas AML cohort, we developed a 300-gene signature that significantly distinguished the patients with RUNX1 mutations from those with other AML subtypes. Furthermore, we explored the mechanisms underlying this signature from the transcriptional and epigenetic levels. Using chromatin immunoprecipitation sequencing data, we found that RUNX1 target genes tended to be repressed in patients with RUNX1 mutations. Through the integration of DNA methylation array data, we illustrated that hypermethylation on the promoter regions of RUNX1-regulated genes also contributed to dysregulation in RUNX1-mutated AML. This study revealed the distinct gene expression pattern of RUNX1 mutations and the underlying mechanisms in AML development.
|
Keywords
RUNX1
gene mutation
acute myeloid leukemia
transcriptional repression
DNA methylation
|
Corresponding Author(s):
Kankan Wang
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Just Accepted Date: 26 April 2021
Online First Date: 27 December 2021
Issue Date: 02 September 2022
|
|
1 |
H Zhu, G Wang, J Qian. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 2016; 17(9): 551–565
https://doi.org/10.1038/nrg.2016.83
pmid: 27479905
|
2 |
H Guo, O Ma, NA Speck, AD Friedman. Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood 2012; 119(19): 4408–4418
https://doi.org/10.1182/blood-2011-12-397091
pmid: 22451420
|
3 |
J Tober, AD Yzaguirre, E Piwarzyk, NA Speck. Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 2013; 140(18): 3765–3776
https://doi.org/10.1242/dev.094961
pmid: 23924635
|
4 |
R Sood, Y Kamikubo, P Liu. Role of RUNX1 in hematological malignancies. Blood 2017; 129(15): 2070–2082
https://doi.org/10.1182/blood-2016-10-687830
pmid: 28179279
|
5 |
JL Tang, HA Hou, CY Chen, CY Liu, WC Chou, MH Tseng, CF Huang, FY Lee, MC Liu, M Yao, SY Huang, BS Ko, SC Hsu, SJ Wu, W Tsay, YC Chen, LI Lin, HF Tien. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114(26): 5352–5361
https://doi.org/10.1182/blood-2009-05-223784
pmid: 19808697
|
6 |
VI Gaidzik, L Bullinger, RF Schlenk, AS Zimmermann, J Röck, P Paschka, A Corbacioglu, J Krauter, B Schlegelberger, A Ganser, D Späth, A Kündgen, IG Schmidt-Wolf, K Götze, D Nachbaur, M Pfreundschuh, HA Horst, H Döhner, K Döhner. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011; 29(10): 1364–1372
https://doi.org/10.1200/JCO.2010.30.7926
pmid: 21343560
|
7 |
JH Mendler, K Maharry, MD Radmacher, K Mrózek, H Becker, KH Metzeler, S Schwind, SP Whitman, J Khalife, J Kohlschmidt, D Nicolet, BL Powell, TH Carter, M Wetzler, JO Moore, JE Kolitz, MR Baer, AJ Carroll, RA Larson, MA Caligiuri, G Marcucci, CD Bloomfield. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol 2012; 30(25): 3109–3118
https://doi.org/10.1200/JCO.2011.40.6652
pmid: 22753902
|
8 |
DA Arber, A Orazi, R Hasserjian, J Thiele, MJ Borowitz, MM Le Beau, CD Bloomfield, M Cazzola, JW Vardiman. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391–2405
https://doi.org/10.1182/blood-2016-03-643544
pmid: 27069254
|
9 |
E Papaemmanuil, M Gerstung, L Bullinger, VI Gaidzik, P Paschka, ND Roberts, NE Potter, M Heuser, F Thol, N Bolli, G Gundem, P Van Loo, I Martincorena, P Ganly, L Mudie, S McLaren, S O’Meara, K Raine, DR Jones, JW Teague, AP Butler, MF Greaves, A Ganser, K Döhner, RF Schlenk, H Döhner, PJ Campbell. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374(23): 2209–2221
https://doi.org/10.1056/NEJMoa1516192
pmid: 27276561
|
10 |
M Gerstung, E Papaemmanuil, I Martincorena, L Bullinger, VI Gaidzik, P Paschka, M Heuser, F Thol, N Bolli, P Ganly, A Ganser, U McDermott, K Döhner, RF Schlenk, H Döhner, PJ Campbell. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 2017; 49(3): 332–340
https://doi.org/10.1038/ng.3756
pmid: 28092685
|
11 |
MI Love, S Anders, V Kim, W Huber. RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000 Res 2015; 4: 1070
https://doi.org/10.12688/f1000research.7035.1
pmid: 26674615
|
12 |
B Langmead, C Wilks, V Antonescu, R Charles. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 2019; 35(3): 421–432
https://doi.org/10.1093/bioinformatics/bty648
pmid: 30020410
|
13 |
H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R; 1000 Genome Project Data Processing Subgroup Durbin. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25(16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352
pmid: 19505943
|
14 |
Y Zhang, T Liu, CA Meyer, J Eeckhoute, DS Johnson, BE Bernstein, C Nusbaum, RM Myers, M Brown, W Li, XS Liu. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137
https://doi.org/10.1186/gb-2008-9-9-r137
pmid: 18798982
|
15 |
AR Quinlan, IM Hall. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841–842
https://doi.org/10.1093/bioinformatics/btq033
pmid: 20110278
|
16 |
S Mei, Q Qin, Q Wu, H Sun, R Zheng, C Zang, M Zhu, J Wu, X Shi, L Taing, T Liu, M Brown, CA Meyer, XS Liu. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 2017; 45(D1): D658–D662
https://doi.org/10.1093/nar/gkw983
pmid: 27789702
|
17 |
M Haeussler, AS Zweig, C Tyner, ML Speir, KR Rosenbloom, BJ Raney, CM Lee, BT Lee, AS Hinrichs, JN Gonzalez, D Gibson, M Diekhans, H Clawson, J Casper, GP Barber, D Haussler, RM Kuhn, WJ Kent. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res 2019; 47(D1): D853–D858
https://doi.org/10.1093/nar/gky1095
pmid: 30407534
|
18 |
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059–2074
https://doi.org/10.1056/NEJMoa1301689
pmid: 23634996
|
19 |
W Zhou, PW Laird, H Shen. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 2017; 45(4): e22
pmid: 27924034
|
20 |
MJ Aryee, AE Jaffe, H Corrada-Bravo, C Ladd-Acosta, AP Feinberg, KD Hansen, RA Irizarry. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014; 30(10): 1363–1369
https://doi.org/10.1093/bioinformatics/btu049
pmid: 24478339
|
21 |
ME Ritchie, B Phipson, D Wu, Y Hu, CW Law, W Shi, GK Smyth. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47
https://doi.org/10.1093/nar/gkv007
pmid: 25605792
|
22 |
TJ Peters, MJ Buckley, AL Statham, R Pidsley, K Samaras, R V Lord, SJ Clark, PL Molloy. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 2015; 8(1): 6
https://doi.org/10.1186/1756-8935-8-6
pmid: 25972926
|
23 |
G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
https://doi.org/10.1089/omi.2011.0118
pmid: 22455463
|
24 |
N Duployez, A Marceau-Renaut, N Boissel, A Petit, M Bucci, S Geffroy, H Lapillonne, A Renneville, C Ragu, M Figeac, K Celli-Lebras, C Lacombe, JB Micol, O Abdel-Wahab, P Cornillet, N Ifrah, H Dombret, G Leverger, E Jourdan, C Preudhomme. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 2016; 127(20): 2451–2459
https://doi.org/10.1182/blood-2015-12-688705
pmid: 26980726
|
25 |
J Fukunaga, Y Nomura, Y Tanaka, R Amano, T Tanaka, Y Nakamura, G Kawai, T Sakamoto, T Kozu. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element. RNA 2013; 19(7): 927–936
https://doi.org/10.1261/rna.037879.112
pmid: 23709277
|
26 |
M Gerritsen, G Yi, E Tijchon, J Kuster, JJ Schuringa, JHA Martens, E Vellenga. RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Adv 2019; 3(3): 320–332
https://doi.org/10.1182/bloodadvances.2018024422
pmid: 30709863
|
27 |
W Jin, K Wu, YZ Li, WT Yang, B Zou, F Zhang, J Zhang, KK Wang. AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene 2013; 32(15): 1978–1987
https://doi.org/10.1038/onc.2012.204
pmid: 22641217
|
28 |
JL Kutok, X Yang, R Folkerth, CN Adra. Characterization of the expression of HTm4 (MS4A3), a cell cycle regulator, in human peripheral blood cells and normal and malignant tissues. J Cell Mol Med 2011; 15(1): 86–93
https://doi.org/10.1111/j.1582-4934.2009.00925.x
pmid: 19818099
|
29 |
M Khan, J Cortes, T Kadia, K Naqvi, M Brandt, S Pierce, KP Patel, G Borthakur, F Ravandi, M Konopleva, S Kornblau, H Kantarjian, K Bhalla, CD DiNardo. Clinical outcomes and co-occurring mutations in patients with RUNX1-mutated acute myeloid leukemia. Int J Mol Sci 2017; 18(8): E1618
https://doi.org/10.3390/ijms18081618
pmid: 28933735
|
30 |
EC O’Brien, J Brewin, T Chevassut. DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia. Ther Adv Hematol 2014; 5(6): 187–196
https://doi.org/10.1177/2040620714554538
pmid: 25469209
|
31 |
CY Ok, S Loghavi, D Sui, P Wei, R Kanagal-Shamanna, CC Yin, Z Zuo, MJ Routbort, G Tang, Z Tang, JL Jorgensen, R Luthra, F Ravandi, HM Kantarjian, CD DiNardo, LJ Medeiros, SA Wang, KP Patel. Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica 2019; 104(2): 305–311
https://doi.org/10.3324/haematol.2018.191148
pmid: 30171025
|
32 |
PA Greif, NP Konstandin, KH Metzeler, T Herold, Z Pasalic, B Ksienzyk, A Dufour, F Schneider, S Schneider, PM Kakadia, J Braess, MC Sauerland, WE Berdel, T Büchner, BJ Woermann, W Hiddemann, K Spiekermann, SK Bohlander. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica 2012; 97(12): 1909–1915
https://doi.org/10.3324/haematol.2012.064667
pmid: 22689681
|
33 |
T Suzuki, Y Shimizu, E Furuhata, S Maeda, M Kishima, H Nishimura, S Enomoto, Y Hayashizaki, H Suzuki. RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 2017; 1(20): 1699–1711
https://doi.org/10.1182/bloodadvances.2017005710
pmid: 29296817
|
34 |
CP Mill, W Fiskus, CD DiNardo, Y Qian, K Raina, K Rajapakshe, D Perera, C Coarfa, TM Kadia, JD Khoury, DT Saenz, DN Saenz, A Illendula, K Takahashi, SM Kornblau, MR Green, AP Futreal, JH Bushweller, CM Crews, KN Bhalla. RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 2019; 134(1): 59–73
https://doi.org/10.1182/blood.2018893982
pmid: 31023702
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|